Se requiere una suscripción a JoVE para ver este contenido. Inicie sesión o comience su prueba gratuita.
Method Article
This work details procedures for rapid identification of bacteria using MALDI-TOF MS. The identification procedures include spectrum acquisition, database construction, and follow up analyses. Two identification methods, similarity coefficient-based and biomarker-based methods, are presented.
MALDI-TOF mass spectrometry has been shown to be a rapid and reliable tool for identification of bacteria at the genus and species, and in some cases, strain levels. Commercially available and open source software tools have been developed to facilitate identification; however, no universal/standardized data analysis pipeline has been described in the literature. Here, we provide a comprehensive and detailed demonstration of bacterial identification procedures using a MALDI-TOF mass spectrometer. Mass spectra were collected from 15 diverse bacteria isolated from Kartchner Caverns, AZ, USA, and identified by 16S rDNA sequencing. Databases were constructed in BioNumerics 7.1. Follow-up analyses of mass spectra were performed, including cluster analyses, peak matching, and statistical analyses. Identification was performed using blind-coded samples randomly selected from these 15 bacteria. Two identification methods are presented: similarity coefficient-based and biomarker-based methods. Results show that both identification methods can identify the bacteria to the species level.
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has been shown to be a rapid and reliable tool for identification of bacteria at the genus, species, and in some cases, strain levels1-4. MALDI-TOF MS ionizes biological molecules (typically proteins) that originate from cell surfaces, intracellular membranes, and ribosomes from bacterial whole cells or protein extracts1,5. The resulting peaks form characteristic patterns or “fingerprints” of the bacteria analyzed1. Identification of bacteria is based on these mass-to-charge “fingerprints”.
Two of the most commonly used identification strategies are library-based and bioinformatics-based strategies1. Library-based approaches involve comparing the mass spectra of unknowns to previously collected mass spectra of known bacteria in databases/libraries for identification. Commercially available software, such as BioNumerics, Biotyper, and SARAMIS software packages, as well as open source software tools, such as SpectraBank6, are available to facilitate the comparison and quantification of similarity between mass spectra of unknowns and reference bacteria. Bioinformatics-based approaches usually rely on fully sequenced genomes of bacteria for identification. In contrast to library-based approaches which do not involve identification of the biological nature of particular peaks, bioinformatics-based approaches involve protein identification1.
The majority of recent MALDI fingerprint-based studies have used library-based approaches to identify bacteria1. Library-based approaches require construction of databases and comparison of the similarity between mass spectra. Studies show that many experimental procedures, such as medium3,7, cultivation time8, sample preparation method3, and matrix used9, affect the mass spectra obtained. Furthermore, some closely-related species and strains generate spectra with only subtle differences. Thus, library-based approaches require rigorously standardized procedures to generate highly reproducible mass spectra between replicates. Minor variations in protocols may compromise the efficacy of identification, especially at the subspecies and strain levels1,3,10. However, neither manufacturer-provided reference databases nor reported custom databases include visually documented procedures for database construction and/or application of a data analysis pipeline. For this reason, the objective of this work was to develop, apply, and demonstrate a comprehensive and detailed procedure for library-based bacterial identification using MALDI-TOF MS.
In this demonstration, mass spectra of 15 bacteria isolated from a karstic environment (Kartchner Cavern, AZ, USA) were collected and imported into software to construct a model database. Data processing and the analysis pipeline were detailed using the model database. Finally, mass spectra of blind-coded bacteria which were randomly selected from these 15 bacteria were collected again and compared to the reference spectra in the model database for identification. Results show that bacteria can be correctly identified either based on similarity coefficients or potential biomarkers/peak classes.
Precaución: las bacterias no identificados de cualquier entorno pueden ser patógenos y deben ser manejados con precaución el uso de protocolos de bioseguridad adecuadas. Trabaja con cultivos vivos debe realizarse en una cabina de seguridad biológica Clase II utilizando procedimientos de seguridad biológica de nivel 2 (BSL-2). Más información acerca de BSL-2 procedimientos está disponible en el manual CDC / NIH titulado, "Bioseguridad en laboratorios microbiológicos y biomédicos", páginas 33-38. El documento está disponible en línea en http://www.cdc.gov/biosafety/publications/bmbl5/BMBL.pdf . Equipos de protección personal (PPE), incluyendo batas de laboratorio / batas, gafas de seguridad y guantes de nitrilo o látex, se debe usar. Prácticas y precauciones análisis microbiológico de base deben seguir, y residuos biológicos peligrosos deben desecharse adecuadamente.
Las bacterias utilizadas en esta demostración se aislaron de las Cavernas Kartchner,AZ, EE.UU., a partir de cuatro ambientes, incluyendo espeleotema seco, piedra flujo, espeleotemas húmedo y goteo estalactita (Tabla 1). Todos los aislamientos fueron identificados por secuenciación de 16S rDNA y se mantuvieron a -80 ° C en 25% de glicerol-R medio 2 B. Todos los experimentos se realizaron a temperatura ambiente.
Nota: Se recomienda utilizar el mismo método de preparación de muestras para adquirir espectros de masas para la construcción de bases de datos y los espectros de masas de incógnitas. Método de preparación de la muestra se ha demostrado previamente para afectar a la calidad del espectro y reproducibilidad 3. Utilizando un método de preparación de la muestra diferente puede causar una incorrecta identificación de incógnitas, especialmente cuando mayor resolución taxonómica (por ejemplo, a nivel de cepa) que se desea.
1. Deposición en el Target MALDI
Precaución: Varios protocolos para obtener extractos de proteínas requieren el uso de ácidos y disolventes orgánicos que deben utilizarse de acuerdo con GUIDElines y la información contenida en sus respectivas Hojas de Datos de Seguridad de Materiales (MSDS). Apropiada PPE debe usar y puede variar en función del tipo y volumen de los productos químicos utilizados (por ejemplo, batas de laboratorio / batas, guantes, gafas de seguridad y de protección respiratoria deben ser usados cuando se trabaja con cantidades significativas de disolventes inflamables, tóxicos, tales como acetonitrilo, y ácidos corrosivos, tales como ácidos fórmico y trifluoroacético).
2. Los espectros de masas Adquisición
3. Base de datos de construcción
Análisis 4. Espectro de masas de datos
5. Las bacterias de identificación con una base de datos personalizada
Las bases de datos construidos en esta demostración tenían cuatro niveles, de mayor a menor nivel, incluyendo "Todos los niveles", "Especies", "réplica biológica" y "técnica de reproducir", respectivamente (Figura 1). La "técnica de reproducir" nivel contenía todos los espectros preprocesado de técnicos repeticiones. El "biológica replicar" y los niveles de "especies" contenían el compuesto (resumen) espectros. "Todos l...
Esta demostración mostró procedimientos detallados de caracterización e identificación de bacterias usando MALDI-TOF MS y una base de datos personalizada. En comparación con los métodos moleculares tradicionales, por ejemplo, los métodos de secuenciación de 16S rDNA de huellas digitales, basados en MS MALDI-TOF facilitan más rápida identificación de diversas bacterias. Debido a su robustez, esta técnica se utiliza ampliamente para caracterizar las bacterias, los virus, los hongos y la levadura del medi...
Authors Vranckx and Janssens are employees of Applied Maths NV, the manufacturer of data analysis software used in this video. Applied Maths NV provided select software modules highlighted in this video as well as a portion of the publication costs associated with this video.
This work was supported by the New College of Interdisciplinary Arts and Sciences at Arizona State University, Applied Maths NV, and by the National Science Foundation (ROA Supplement to Award No. MCB0604300). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Name | Company | Catalog Number | Comments |
α-cyano-4-hydroxy-cinnamic acid | ACROS Organics | 163440050 | ≥ 97%, CAS 28168-41-8 |
Bruker FlexControl software | Bruker Daltonics | version 3.0 | |
Bruker FlexAnalysis software | Bruker Daltonics | version 3.0 | |
Bionumerics software | Applied Maths | version 7.1 |
Solicitar permiso para reutilizar el texto o las figuras de este JoVE artículos
Solicitar permisoThis article has been published
Video Coming Soon
ACERCA DE JoVE
Copyright © 2025 MyJoVE Corporation. Todos los derechos reservados