S'identifier

Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

A low-cost electroencephalographic recording system combined with a millimeter-sized coil is proposed to drive transcranial magnetic stimulation of the mouse brain in vivo. Using conventional screw electrodes with a custom-made, flexible, multielectrode array substrate, multi-site recording can be carried out from the mouse brain in response to transcranial magnetic stimulation.

Abstract

A low-cost electroencephalographic (EEG) recording system is proposed here to drive transcranial magnetic stimulation (TMS) of the mouse brain in vivo, utilizing a millimeter-sized coil. Using conventional screw electrodes combined with a custom-made, flexible, multielectrode array substrate, multi-site recording can be carried out from the mouse brain. In addition, we explain how a millimeter-sized coil is produced using low-cost equipment usually found in laboratories. Practical procedures for fabricating the flexible multielectrode array substrate and the surgical implantation technique for screw electrodes are also presented, which are necessary to produce low-noise EEG signals. Although the methodology is useful for recording from the brain of any small animal, the present report focuses on electrode implementation in an anesthetized mouse skull. Furthermore, this method can be easily extended to an awake small animal that is connected with tethered cables via a common adapter and fixed with a TMS device to the head during recording.The present version of the EEG-TMS system, which can include a maximum of 32 EEG channels (a device with 16 channels is presented as an example with fewer channels) and one TMS channel device, is described. Additionally, typical results obtained by the application of the EEG-TMS system to anesthetized mice are briefly reported.

Introduction

Transcranial magnetic stimulation (TMS) is a promising tool for human brain science, clinical application, and animal model research because of its non-/low invasiveness. During the early stage of TMS applications, measurement of the cortical effect in response to single- and paired-pulse TMS in humans and animals was restricted to the motor cortex; easily measurable output was limited to motor evoked potentials and induced myoelectric potentials involving the motor cortex1,2. To expand the brain regions that can be measured by TMS modulation, electroencephalographic (EEG) recording was integrated with single-....

Protocol

In the present study, all animal experiments were performed following the National Institutes of Health Guide for the Care and Use of Laboratory Animals and with approval from the Institutional Animal Care and Use Committee of Hokkaido University. C57BL/6J mice, two male and three female, 8 to 10 weeks old, were used for the present study. This is a terminal procedure. The animals were obtained from a commercial source (see Table of Materials).

1. Flexible two-dimensiona.......

Representative Results

Sample EEG data recorded in anesthetized C57BL/6J mice with the flexible substrate combined with the screw electrodes are presented below.

As a typical example, the average EEG waveforms generated in response to sound stimulation (8 kHz tone-burst, 80 dB sound pressure level [SPL]) are shown for 60 trials with identical stimuli (Figure 4A). A schematic of recording channel mapping is also presented in the middle of Figure 4A. The resp.......

Discussion

This study addresses a multi-site EEG recording system combined with a magnetic stimulation system designed for small animals, including mice. The constructed system is low-cost and easily constructed in physiological laboratories, and can extend their existing measurement setups. The surgical procedure necessary to obtain data from the mouse recording system is profoundly simple if such laboratories have previous experience with standard electrophysiological experiments.

One advantage of usin.......

Acknowledgements

This work was supported by the Murata Science Foundation, the Suzuken Memorial Foundation, the Nakatani Foundation for Advancement of Measuring Technologies in Biomedical Engineering, and a Grant-in-Aid for Exploratory Research (grant number 21K19755, Japan) and for Scientific Research (B) (grant number 23H03416, Japan) to T.T.

....

Materials

NameCompanyCatalog NumberComments
3D printerZhejiang Flashforge 3D Technology Co., LtdFFD-101The printer used for 3D-printing the donut-shaped disks
ATROPINE SULFATE  0.5 mgNIPRO ES PHARMA CO., LTD.-Atropine sulfate
Bipolar amplifierNF Corp.KIT61380For amplifying waveforms for coil input
ButorphanolMeiji Seika Pharma
Co., Ltd., Tokyo, Japan
-For anathesis of animals
Commercial manufacturer of flexible 2D arrayp-ban.com Corp.-URL: https://www.p-ban.com/
Computer prograom to analyze output signalsNatinal InstrumentsNI-DAQ and  NI-DAQmx PythonTo analyze output signals from the hall-effect sensor
ConnectorHarwin Inc.G125-FV12005L0PFor connector to conect to the measuring system
Copper padp-ban.com Corp.copperCopper pad on each substrate
Copper wireKyowa Harmonet Ltd.P644432The windings of the coil
DAQ boardNational Instruments Corp.USB-6343For measuring the magnitic flux density of the coil
Dental cementSHOFU INC.Quick ResinSelf-Curing Orthodontic Resin
ECoG electrodeNeuroNexus Inc.HC32For reference to design of the flexible 2D array
Epoxy resinKonishi Co. Ltd.#16123For coil construction
Ethyl CarbamateFUJIFILM Wako Pure Chemical Corp.050-05821For urethan anesthesia
Flat ribbon cableOki Electric Cable Co., Ltd.FLEX-B2(20)-7/0.1 20028 5mFor cable to connect between surface-mount connector and measuring sysytem
flexible substratep-ban.com Corp.polyimideBaseplate of flexible substrate
Function generatorNF Corp.WF1947For generating waveforms for coil input
Hall-effect sensorHoneywell International Inc.SS94A2DFor measuring the magnitic flux density of the coil
IDC crimping toolPro'sKit Industries Co.6PK-214To crimp the IDC and one end of the flat ribbon cable; Flat cable connector crimping tool
Instant glueKonishi Co. Ltd.#04612For coil construction
Insulation-displacement connector (IDC )Uxcell JapanB07GDDG3XG2 × 10 pins and a 1.27 mm pitch 
LCR meterNF Corp.ZM2376For measuring the AC properties of the coil
ManipulatorNARISHIGE Group.SM-15LFor manipulating the coil
MedetomidineKobayashi Kako, Fukui, Japan-For anathesis of animals
MidazolamAstellas Pharma, Tokyo, Japan-For anathesis of animals
Miniature screwKOFUSEIBYO Co., Ltd.S0.6*1.5For EEG-senseing and reference electrode
MouseJapan SLC, Inc.C57BL/6J (C57BL/6JJmsSlc)Experimental animal
Permalloy-45 rodThe Nilaco Corp.780544The core of the coil
Recording systemPlexon Inc.OmniPlexFor EEG data acquisition
Stainless wireWakisangyo Co., Ltd.HW-136For grasp by manipulator
Stereotaxic apparatusNARISHIGE Group.SR-5M-HTTo fix a mouse head
Surface-mount connectorUseconn Electronics Ltd.PH127-2x10MGFor connector to mount on the flexible 2D array
Testing equipment (LCR meter)NF Corp.ZM2372Contact check and impedance measurements
White PLA filamentZhejiang Flashforge 3D Technology Co., LtdPLA-F13The material used for 3D-printing the donut-shaped disks
Xylocaine Jelly 2%Sandoz Pharma Co., Ltd.-lidocaine hydrochloride

References

Explore More Articles

EEGTMSTranscranial Magnetic StimulationElectroencephalographyMouse BrainNeuroscienceLow costMillimeter sized CoilMulti site RecordingFlexible Multielectrode ArrayScrew ElectrodesSmall Animal ModelsBrain ActivityNeurophysiology

This article has been published

Video Coming Soon

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.