Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.

Dans cet article

  • Résumé
  • Résumé
  • Introduction
  • Protocole
  • Résultats Représentatifs
  • Discussion
  • Déclarations de divulgation
  • Remerciements
  • matériels
  • Références
  • Réimpressions et Autorisations

Résumé

Cet article décrit comment bio-imprimer en 3D des hydrogels photoaccordables pour étudier le raidissement de la matrice extracellulaire et l’activation des fibroblastes.

Résumé

Les hydrogels photoaccordables peuvent se transformer spatialement et temporellement en réponse à l’exposition à la lumière. L’incorporation de ces types de biomatériaux dans des plateformes de culture cellulaire et le déclenchement dynamique de changements, tels que l’augmentation de la rigidité microenvironnementale, permettent aux chercheurs de modéliser les changements dans la matrice extracellulaire (MEC) qui se produisent au cours de la progression de la maladie fibrotique. Dans cet article, une méthode de bio-impression 3D d’un biomatériau hydrogel photoaccordable capable de deux réactions de polymérisation séquentielles dans un bain de support de gélatine est présentée. La technique de bio-impression FRESH (Freeform Reversible Embedding of Suspended Hydrogels) a été adaptée en ajustant le pH du bain de support pour faciliter une réaction d’addition de Michael. Tout d’abord, la bio-encre contenant du méthacrylate de poly(éthylène glycol)-alpha (PEGαMA) a réagi hors stœchiométrie avec un agent de réticulation dégradable par cellule pour former des hydrogels mous. Ces hydrogels mous ont ensuite été exposés à un photo-initateur et à la lumière pour induire l’homopolymérisation des groupes qui n’ont pas réagi et rigidifier l’hydrogel. Ce protocole couvre la synthèse d’hydrogel, la bio-impression 3D, le phototiffening et la caractérisation des paramètres pour évaluer l’activation des fibroblastes dans les structures 3D. La méthode présentée ici permet aux chercheurs de bio-imprimer en 3D une variété de matériaux qui subissent des réactions de polymérisation catalysées par le pH et pourraient être mis en œuvre pour concevoir divers modèles d’homéostasie, de maladie et de réparation des tissus.

Introduction

La bio-impression 3D est une technologie transformatrice qui permet aux chercheurs de déposer avec précision des cellules et des biomatériaux dans des volumes 3D et de recréer la structure hiérarchique complexe des tissus biologiques. Au cours de la dernière décennie, les progrès de la bio-impression 3D ont permis de créer des tissus cardiaques humains battants1, des modèles fonctionnels des tissus rénaux2, des modèles d’échange gazeux dans les poumons3 et des modèles tumoraux pour la recherche sur le cancer4. L’invention des techniques de bio-impression 3D embarquée, telle....

Protocole

1. Synthèse et caractérisation de PEGαMA

REMARQUE : La synthèse du poly(éthylène glycol)-alpha méthacrylate (PEGαMA) a été adaptée de Hewawasam et al. et réalisée dans des conditions sans humidité9.

  1. Peser les réactifs.
    REMARQUE : Par exemple, peser 5 g de PEG-hydroxyle à 8 bras (PEG-OH) de 10 kg/mol et 0,38 g d’hydrure de sodium (NaH) (voir le tableau des matériaux).
  2. Ajouter une barre d’agitation dans une fiole Schlenk de 250 ml et purger avec de l’argon.
  3. Dissoudre le PEG-OH dans le plus faible volume de tétrahydrofurane anhydre (THF) nécessa....

Résultats Représentatifs

Ce protocole décrit comment bio-imprimer en 3D des hydrogels photoaccordables dans un bain de support pour créer des constructions capables de raidissement dynamique et temporel pour étudier l’activation des fibroblastes dans des géométries qui imitent les tissus humains. Tout d’abord, le protocole expliquait comment synthétiser le PEGαMA, l’épine dorsale de ce système polymère photoaccordable. Les mesures de spectroscopie par résonance magnétique nucléaire (RMN) ont montré une fonctionnalisation réu.......

Discussion

Les réactions de polymérisation en deux étapes en réponse à une exposition contrôlée à la lumière peuvent rigidifier les biomatériaux avec un contrôle spatial et temporel. Plusieurs études ont exploité cette technique pour évaluer les interactions cellule-matrice dans diverses plateformes 5,8,9,10,11,21,22,23.

Déclarations de divulgation

Les auteurs n’ont aucun conflit d’intérêts à divulguer. Des parties de ce manuscrit sont reproduites avec la permission d’IOP © Publishing https://doi.org/10.1088/1758-5090/aca8cf. 5 Tous droits réservés.

Remerciements

Les auteurs tiennent à remercier le Dr Adam Feinberg (Université Carnegie Mellon) et ceux qui ont organisé l’atelier 3D Bio-Printing Open-Source. Ces personnes ont permis d’apprendre les techniques de bio-impression FRESH et de construire la bio-imprimante 3D utilisée pour ces études. De plus, les auteurs tiennent à remercier Biorender.com, qui a été utilisé pour produire des figures dans ce manuscrit. Ce travail a été soutenu par de multiples groupes ou sources de financement, notamment la Rose Community Foundation (DDH et CMM), une bourse de recherche sur les maladies vasculaires pulmonaires du Colorado (DDH et CMM), la National Science Foundation sous le prix 19414....

matériels

NameCompanyCatalog NumberComments
AccuMax Radiometer/Photometer KitSpectronics CorporationXPR-3000To measure light intensity, used for photostiffening
Acetic Acid Fisher ScientificBP2401-500Used during PEGaMA synthesis
AcetoneFisher ScientificA184Used with the cryosections
ActinGreen 488 ReadyProbesFisher ScientificR37110Used for staining
Aluminum FoilReynoldsF28028
Anhydrous Tetrahydrofuran (THF)Sigma-Aldrich401757-1LUsed during PEGaMA synthesis
Argon Compressed GasAirgasAR R300Used during PEGaMA synthesis
8 Arm Poly(ethylene glycol)-hydroxyl (PEG-OH)JenKem Technology8ARM-PEG-10KUsed during PEGaMA synthesis
365 nm Bandpass FilterEdmund Optics65-191Used for photostiffening
Bovine Serum Albumin (BSA)Fisher ScientificBP9700-100Used during staining process
Buchner FunnelQuark GlassQFN-8-14Used during PEGaMA synthesis
Calcein AMInvitrogen65-0853-39Used during staining process
Celite 545 (Filtration Aid)EMD MilliporeCX0574-1Used during PEGaMA synthesis
Charged Microscope SlidesGlobe Scientific1358W
Chloroform-dSigma-Aldrich151823-10X0.75MLUsed to characterize PEGaMA
Click-iT Plus EdU Cell Proliferation KitInvitrogenC10637Used for staining
50 mL Conical TubesCELLTREAT667050B
Cryogenic Safety KitCole-ParmerEW-25000-85
CryostatLeicaCM 1850-3-1
Dialysis TubingRepligen132105
4’,6-Diamidino-2-Phylindole (DAPI)Sigma-AldrichD9542-1MGUsed for staining
Diethyl EtherFisher ScientificE1384Used during PEGaMA synthesis
1,4-Dithiothreitol (DTT) Sigma-Aldrich10197777001Bioink component
Dulbecco's Modified Eagle's Medium (DMEM)CytivaSH30271.FS
Ethyl 2-(Bromomethyl)Acrylate (EBrMA)Ambeed Inc.A918087-25gUsed during PEGaMA synthesis
Filter PaperWhatman1001-090Used during PEGaMA synthesis
Freezone 2.5L Freeze Dry SystemLabconcoLA-2.5LRLyophilizer
Fusion 360AutodeskN/ASoftware download
2.5 mL Gastight SyringeHamilton81420Used for bioprinting
15 Gauge 1.5" IT Series TipJensen GlobalJG15-1.5XUsed for bioprinting
30 Gauge 0.5" HP Series TipJensen GlobalJG30-0.5HPXUsed for bioprinting
Goat Anti-Mouse Alexa Fluor 555 AntibodyFisher ScientificA21422Used for staining
GlycineFisher ScientificC2H5NO2Used during staining process
HemocytometerFisher Scientific1461
HoechstThermo Scientific62249Used during staining process
Human Pulmonary Artery Adventitial Fibroblasts (HPAAFs)AcceGenABC-TC3773 From a 2-year-old male patient
Hydrochloric Acid (HCl)Fisher ScientificA144-500Used to pH adjust solutions
ImageJNational Institutes of Health (NIH)N/AFree software download
ImmEdge® PenVector LaboratoriesH-4000Used during staining process
IncubatorVWRVWR51014991
LifeSupport Gelatin Microparticle Slurry (Gelatin Slurry)Advanced Biomatrix5244-10GMUsed for bioprinting
Light MicroscopeOlympusCKX53Inverted light microscope
Lithium Phenyl-2,4,6-Trimethylbenzoylphosphinate (LAP)Sigma-Aldrich900889-5GPhotoinitiator used for photostiffening
Liquid NitrogenN/AN/A
LulzBot Mini 2 LulzBotN/ABioprinter adapted
Methacryloxyethyl Thiocarbamoyl Rhodamine B Polysciences Inc.669775-30-8
2-MethylbutaneSigma-AldrichM32631-4L
Microman Capillary Pistons CP1000VWR76178-166Positive displacement pipette tips
MMP2 Degradable Crosslinker (KCGGPQGIWGQGCK)GL BiochemN/ABioink component
Mouse Anti-Human αSMA Monoclonal AntibodyFisher ScientificMA5-11547Used for staining
OmniCure Series 2000 Lumen DynamicsS2000-XLAUV light source used for photostiffening
Paraformaldehyde (PFA) Electron Microscopy Sciences15710Used to fix samples
pH MeterMettler Toledo FP20 
pH StripsCytiva10362010
Phosphate Buffered Saline (PBS)Hyclone Laboratories, Inc.Cytiva SH30256.FS
Pipette SetFisher Scientific14-388-100
10 µL Pipette TipsUSA Scientific1120-3710
20 µL Pipette TipsUSA Scientific1183-1510
200 µL Pipette TipsUSA Scientific1111-0700
1000 µL Pipette TipsUSA Scientific1111-2721
Poly(Ethylene Glycol)-Alpha Methacrylate (PEGαMA)N/AN/ARefer to manuscript for synthesis steps
Poly(Ethylene Oxide) (PEO)Sigma-Aldrich372773-250GBioink component
Positive Displacement PipetteFisher ScientificFD10004G100-1000 µL
Potassium Hydroxide (KOH)Sigma-Aldrich221473-500GUsed to pH adjust solutions
ProLong Gold Antifade ReagentInvitrogenP36930Used during staining process
PronterfaceAll3DPN/ASoftware download
Propidium IodideSigma-AldrichP4864-10MLUsed for staining
RGD Peptide (CGRGDS)GL BiochemN/ABioink component
RockerVWR10127-876
Rotary Evaporator Thomas Scientific11100V2022Used during PEGaMA synthesis
Rubber BandStaples808659
Schlenk Flask Kemtech AmericaF902450Used during PEGaMA synthesis
Slic3rSlic3rN/ASoftware download
Smooth Muscle Cell Growth Medium-2 (SmGM-2) BulletKitLonzaCC-3182Kit contains CC-3181 and CC-4149 components
Sodium Hydride Sigma-Aldrich223441-50GUsed during PEGaMA synthesis
Sorvall ST 40R CentrifugeFisher Scientific75-004-525
Stir BarVWR58948-091
Syringe FilterVWR28145-483Used to sterile filter solutions
T-75 Tissue-Cultured Treated FlaskVWR82050-856Used for cell culture work
Tissue-Tek CyromoldSakura4557
Tissue-Tek O.C.T Compound (OCT)Sakura4583
Tris(2-Carboxyethyl) Phosphine (TCEP)Sigma-AldrichC4706-2G
Triton X-100Fisher BioreagentsC34H622O11Used during staining process
Trypan BlueSigma-AldrichT8154-20MLUsed for cell culture work
0.05% Trypsin-EDTAGibco25-300-062Used for cell culture work
Tween 20Fisher BioreagentsC58H114O26Used during staining process
Upright MicroscopeOlympusBX63FFluorescent microscope capabilities
Water BathPolyScienceWBE20A11B
24-Well Tissue Culture PlatesCorning3527

Références

  1. Ahrens, J. H., et al. Programming cellular alignment in engineered cardiac tissue via bioprinting anisotropic organ building blocks. Advanced Materials. 34 (26), e2200217 (2022).
  2. Lin, N. Y. C., et al.

Réimpressions et Autorisations

Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE

Demande d’autorisation

Explorer plus d’articles

Bio impression 3Dhydrogels photoaccordablesactivation de fibroblastesbiomat riauxplateformes de culture cellulairematrice extracellulaire MECprogression des maladies fibrotiquesint gration r versible de forme libre d hydrogels en suspension FRESHr actions de polym risationbain de support de g latinem thacrylate de poly thyl ne glycol alpha PEG 945 MAr ticulant d gradable par les celluleshydrogels mousphotoinitateurcaract risations des param treshom ostasie tissulairemod lisation des maladiesr paration tissulaire

This article has been published

Video Coming Soon

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.