È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.
Method Article
In questo protocollo, descriviamo un metodo micropipetta per applicare direttamente una forza controllata al nucleo in una cellula vivente. Questo test permette di interrogatorio di proprietà meccaniche nucleari nella cellula viva, aderente.
Le proprietà meccaniche del nucleo determinano la sua risposta a forze meccaniche generate nelle cellule. Poiché il nucleo è molecolarmente continuo con il citoscheletro, metodi sono necessari per sondare il suo comportamento meccanico in cellule aderenti. Qui, discutiamo la sonda di forza diretta (DFP) come strumento per applicare la forza direttamente al nucleo in una cellula aderente vivente. Noi attribuiamo una micropipetta stretta per la superficie nucleare con aspirazione. La micropipetta è traslata lontano il nucleo, che fa sì che il nucleo di deformare e tradurre. Quando la forza di ripristino è uguale alla forza di aspirazione, il nucleo si stacca e rilassa elasticamente. Poiché la pressione di aspirazione è noto con precisione, la forza sulla superficie nucleare è noto. Questo metodo ha rivelato che le forze su scala nanometrica sono sufficienti per deformare e tradurre il nucleo in cellule aderenti e identificati gli elementi del citoscheletro che consentono il nucleo resistere alle forze. La DFP può essere utilizzata per sezionare i contributi di componenti cellulari e nucleare nucleare proprietà meccaniche in cellule viventi.
Patologie come il cancro coinvolgono alterazioni nucleare forma e struttura1,2, che sono generalmente accompagnati da un 'addolcimento' del nucleo3,4. Nucleare resistenza alla deformazione meccanica è stata caratterizzata generalmente applicando una forza di nuclei isolati5.
Il nucleo in cellule è molecolarmente collegato al citoscheletro dal Linker di Nucleoskeleton e citoscheletro (LINC) complesso6,7,8,9. Di conseguenza, il nucleo è integrato meccanicamente con il citoscheletro e, attraverso le adesioni cellula-substrato, la matrice extracellulare. Meccanicamente sondando il nucleo all'interno di cellule aderenti può fornire la comprensione in questa integrazione meccanica. Metodi per manipolare i nuclei in cellule viventi includono micropipetta aspirazione10,11e a forza atomica microscopia12,13,14. Recentemente abbiamo descritto una sonda di forza diretta (DFP) che si applica forze meccaniche direttamente sul nucleo in un vivente cellulari aderenti15.
Qui, descriviamo la procedura per l'utilizzo di un sistema di microiniezione che è comunemente disponibile in strutture di microscopia di applicare una forza meccanica di nano-scala nota, direttamente al nucleo in una cellula aderente. Un femtotip (punta della micropipetta diametro di 0,5 µm) è montato e collegato al sistema di microiniezione di un tubo. La punta, posizionata ad un angolo di 45° rispetto alla superficie della piastra di coltura, si abbassa fino a adiacente alla superficie nucleare. Il tubo viene quindi disconnesso e aperto all'atmosfera, che crea una pressione negativa di aspirazione sulla superficie nucleare e sigilla la punta della micropipetta contro la superficie nucleare. Attraverso la traduzione della punta della micropipetta, il nucleo è deformato e alla fine (a seconda della grandezza della forza applicata), staccato dalla micropipetta. Questo distacco si verifica quando le forze antagoniste (resiste), esercitate dal nucleo e cella, uguale la forza di aspirazione applicata dalla micropipetta. Analisi può essere effettuata misurando lo spostamento del nucleo, il ceppo di lunghezza (equazione 1), o il ceppo di zona (Figura 1A).
1. preparare le celle per l'Imaging
Nota: La sonda di forza diretta (DFP) può essere utilizzata per qualsiasi tipo di cellula aderente. Qui, fibroblasti NIH 3T3 del mouse sono usati come la linea cellulare modello per questo protocollo.
2. microscopia e acquisizione di immagini
Nota: Un invertito fluorescenza Microscopio (o equivalente) con micromanipolatore installato per il braccio di lato, secondo le raccomandazioni del produttore. Il microscopio deve anche essere dotato di una camera climatica per mantenere la temperatura a 37 ° C e il livello di CO2 al 5%. È necessario anche un micromanipolatore e microinjector collegato al microscopio. Un olio immersione 40x / 1.3 NA o 60x / 1,49 NA (o obiettivi equivalenti) sono raccomandati per gli esperimenti. Il microscopio deve essere montato su un tavolo di isolamento delle vibrazioni.
Figura 1 . Microscopio di messa a fuoco e di deformazione nucleare
A. massima deformazione nucleare e rilassamento della deformazione nucleare. Prima di calcolare la deformazione massima nucleare, i bordi posteriori delle forme nucleare erano in primo luogo ha coinciso per correggere per la traduzione del nucleo deformato. La forma del nucleo al momento del distacco di punta della micropipetta è stata sovrapposta la forma nucleare iniziale prima di tirare. La differenza nell'area tra le due forme è stata misurata come Δun1. La massima deformazione nucleare è stata definita come ΔA1 diviso per l'area nucleare originale. Allo stesso modo, un secondo parametro, ΔA2, può essere definito mediante la sovrapposizione della forma nucleare finale allo stato stazionario dopo distacco micropipetta della forma nucleare originale. B. lo stato attivo della cella al piano A e quindi spostare il piano focale fino a piano B per trovare la punta di una micropipetta. Durante la formazione immagine, la micropipetta è stato tradotto a destra (direzione della freccia arancione). Questa figura è stata modificata da Neelam et al. 15. Clicca qui per visualizzare una versione più grande di questa figura.
3. analisi dei dati
La Figura 2A Mostra la forzatura di un nucleo di fibroblasto NIH 3T3 del mouse. Come la punta di una micropipetta è tradotto a destra, il nucleo si deforma e alla fine si stacca dalla punta della micropipetta. Il ceppo di lunghezza del nucleo è visto ad aumentare con l'aumento della forza di aspirazione (Figura 2B). Il bordo anteriore del nucleo (micropipetta tirando bordo) forma una protrusione nucleare ed il bordo d'uscita è...
L'integrazione meccanica del nucleo con il citoscheletro di misura è una sfida per i metodi più attuali, ad esempio micropipetta aspirazione16, perché richiedono entrambi nuclei isolati (dove il nucleo è disaccoppiato dal citoscheletro) o nuclei in cellule sospese (dove le forze extracellulari, quali le forze di trazione, sono assenti). Vigore è stato applicato al nucleo applicando deformazione biassiale a aderente celle a una membrana17,18...
Gli autori non hanno nulla a rivelare.
Questo lavoro è stato supportato da NIH R01 EB014869.
Name | Company | Catalog Number | Comments |
FluoroDish | WPI | FD35 | |
SYTO 59 | ThermoFisher Scientific | S11341 | |
Femtotips | Eppendorf | 930000043 | |
InjectMan NI2 | Eppendorf | NA | discontinued, current equivalent model: InjectMan 4 |
FemtoJet | Eppendorf | NA | Current model FemtoJet 4i |
Plan Fluor oil immersion 40x | Nikon | NA | |
Apo TIRF oil immersion 60x | Nikon | NA | |
Donor Bovine Serum (DBS) | ThermoFisher Scientific | 16030074 | NIH 3T3 serum |
Dulbecco's Modification of Eagle's (DMEM) | Mediatech cellgro | MT10013CVRF | NIH 3T3 medium |
Penicillin-Streptomycin | Mediatech | MT30004CIRF | NIH 3T3 medium supplement |
Immersion Oil Type LDF Non-Fluorescing | Nikon | 77007 | Immersion oil for objective lens |
Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE
Richiedi AutorizzazioneThis article has been published
Video Coming Soon