È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.
* Questi autori hanno contribuito in egual misura
Il protocollo descrive come monitorare gli eventi elettrochimici su singole nanoparticelle utilizzando la spettroscopia e l'imaging di scattering Raman potenziati dalla superficie.
Lo studio delle reazioni elettrochimiche su singole nanoparticelle è importante per comprendere le prestazioni eterogenee delle singole nanoparticelle. Questa eterogeneità su scala nanometrica rimane nascosta durante la caratterizzazione mediata dell'insieme delle nanoparticelle. Sono state sviluppate tecniche elettrochimiche per misurare le correnti da singole nanoparticelle, ma non forniscono informazioni sulla struttura e l'identità delle molecole che subiscono reazioni sulla superficie dell'elettrodo. Le tecniche ottiche come la microscopia e la spettroscopia SERS (surface-enhanced Raman scattering) possono rilevare eventi elettrochimici su singole nanoparticelle fornendo contemporaneamente informazioni sulle modalità vibrazionali delle specie di superficie degli elettrodi. In questo articolo, viene dimostrato un protocollo per tracciare la riduzione elettrochimica dell'ossidazione del blu del Nilo (NB) su singole nanoparticelle Ag utilizzando la microscopia e la spettroscopia SERS. In primo luogo, viene descritto un protocollo dettagliato per la fabbricazione di nanoparticelle di Ag su un film Ag liscio e semitrasparente. Un modo plasmone dipolare allineato lungo l'asse ottico è formato tra una singola nanoparticella Ag e un film Ag. L'emissione SERS da NB fissata tra la nanoparticella e il film è accoppiata nella modalità plasmone e l'emissione ad alto angolo viene raccolta da un obiettivo al microscopio per formare un modello di emissione a forma di ciambella. Questi modelli di emissione SERS a forma di ciambella consentono l'identificazione univoca di singole nanoparticelle sul substrato, da cui è possibile raccogliere gli spettri SERS. In questo lavoro, viene fornito un metodo per impiegare il substrato SERS come elettrodo di lavoro in una cella elettrochimica compatibile con un microscopio ottico invertito. Infine, viene mostrato il monitoraggio della riduzione elettrochimica dell'ossidazione delle molecole NB su una singola nanoparticella Ag. La configurazione e il protocollo qui descritti possono essere modificati per studiare varie reazioni elettrochimiche su singole nanoparticelle.
L'elettrochimica è un'importante scienza di misurazione per studiare il trasferimento di carica, l'accumulo di carica, il trasporto di massa, ecc., Con applicazioni in diverse discipline, tra cui biologia, chimica, fisica e ingegneria 1,2,3,4,5,6,7 . Convenzionalmente, l'elettrochimica comporta misurazioni su un insieme - una vasta collezione di singole entità come molecole, domini cristallini, nanoparticelle e siti superficiali. Tuttavia....
1. Preparazione del substrato SERS gap-mode
La figura 2A mostra i substrati a film sottile di Ag preparati utilizzando un sistema di deposizione di metallo a fascio di elettroni. Il substrato "buono" mostrato in Figura 2A ha una copertura omogenea di metallo Ag sopra il vetrino, mentre il substrato "cattivo" ha una copertura non uniforme di Ag. Lo spettro ultravioletto-visibile del film sottile Ag "buono" è mostrato nella Figura 2B, che dimostra che il film è parzialmente t.......
Il deposito di pellicole metalliche sottili di Cu e Ag su vetrini puliti è fondamentale per garantire che il film finale abbia una rugosità non superiore a due o quattro strati atomici (o una rugosità quadrata media della radice inferiore o uguale a circa 0,7 nm). Polvere, graffi e detriti presenti sul coprislip prima della deposizione del metallo sono problemi comuni che impediscono la fabbricazione del film liscio necessario per produrre modelli di emissione a forma di ciambella. Pertanto, si consiglia di sonicare i.......
Gli autori dichiarano di non avere interessi finanziari concorrenti.
Questo lavoro è stato supportato da fondi iniziali dell'Università di Louisville e finanziamenti da Oak Ridge Associated Universities attraverso un Ralph E. Powe Junior Faculty Enhancement Award. Gli autori ringraziano il Dr. Ki-Hyun Cho per aver creato l'immagine nella Figura 1. La deposizione di metallo e il SEM sono stati eseguiti presso il Micro/Nano Technology Center dell'Università di Louisville.
....Name | Company | Catalog Number | Comments |
Acetone, microelectronic grade | J. T. Baker | 9005-05 | |
Adjustable pipette, Eppendorf Reference 2 5000 mL | Eppendorf | 4924000100 | |
Analytical Balance, AB54-S/FACT | Metter Toledo | N.A. | |
Atomic Force Microscope, Easy scan 2 | Nanosurf | N.A. | |
AXXIS Electron Beam Thin Film Deposition System | Kurt J. Lesker | N.A. | |
Cary 60 UV-Vis Spectrophotometer | Agilent | N.A. | |
Conductive epoxy, two part | Electron Microscopy Sciences | 12642-14 | |
Copper pellets, 99.99% pure | Kurt J. Lesker | EVMCU40EXE | |
Copper wire, bare, 18 AWG | VWR | 66248-040 | |
Crucible, Graphite E-Beam | Kurt J. Lesker | EVCEB-23 | |
Diamond Scriber | Ted Pella | 54484 | |
EMCCD Camera, ProEM HS: 1024BX3 | Teledyne Princeton Instruments | N.A. | |
Epoxy, Clear | Gorilla Glue | N.A. | |
Glass Tube Cutter | Wheeler-Rex | 69012 | |
Glass Tube, Borossilicate (OD 0.75", ID 0.62", L 12") | McMaster-Carr | 8729K45 | |
Immersion oil, Type-F | Olympus | IMMOIL-F30CC | |
Inverted Microscope, IX73 | Olympus | N.A. | |
Laser, Excelsior One 642 nm Free space | Spectra-Physics | N.A. | |
LightField | Teledyne Princeton Instruments | N.A. | |
MATLAB 2022b | MathWorks | N.A. | |
Micro cover glass (coverslips), 24×60 mm No. 1 | VWR | 48404-455 | |
Microscope Smartphone Camera Adapter | qhma | QHMC017A-S01 | |
Nile Blue A, pure | Acros Organics | 415690100 | |
Nitrogen, Ultra Pure, Compressed | Specialty Gases | N.A. | |
Objective, UPLanXApo 100× Oil Immersion | Olympus | 14-910 | |
Polyimide Film, Kapton | 3M | 16089-4 | |
Potassium Phosphate Monobasic | VWR | P285 | |
Potentiostat, 660E | CH Instruments | N.A. | |
Pt wire | Alfa Aesar | 10956-BS | |
Scanning Electron Microscope, Apreo C SEM | Thermo Fischer Scientific | N.A. | |
Si wafer | Ted Pella | 16006 | |
Silver nanoparticles (nanospheres), NanoXact 0.02 mg/mL in 2 mM citrate | nanoComposix | AGCN60 | |
Silver pellets, 99.99% pure | Kurt J. Lesker | EVMAG40EXE-A | |
Slide Rack, Wash-N-Dry | Diversified Biotech | WSDR-2000 | |
Smartphone, iPhone 13 mini | Apple | N.A. | |
Sodium Phosphate Dibasic Heptahydrate | VWR | 0348 | |
Spectrometer, IsoPlane SCT320 | Teledyne Princeton Instruments | N.A. | |
Tissue Wipers, Light-duty | VWR | 82003-820 | |
Tweezers, KS-04 | Kaisi Hardware | N.A. | |
Utrasonic Generator, sweepSONIK | Blackstone-NEY Ultrasonics | 809379 | |
Water Ultrapurifier, Sartorius Arium mini | Sartorius | N.A. |
Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE
Richiedi AutorizzazioneEsplora altri articoli
This article has been published
Video Coming Soon