Il metodo di Evans

Panoramica

Fonte: Tamara M. Powers, Dipartimento di Chimica, Texas A & M University

Mentre la maggior parte delle molecole organiche sono diamagnetiche, in cui tutti i loro elettroni sono accoppiati in legami, molti complessi di metalli di transizione sono paramagnetici, che ha stati di base con elettroni spaiati. Ricordiamo la regola di Hund, che afferma che per orbitali di energie simili, gli elettroni riempiranno gli orbitali per massimizzare il numero di elettroni spaiati prima di accoppiarsi. I metalli di transizione hanno orbitali dparzialmente popolati le cui energie sono perturbate in misura variabile dalla coordinazione dei ligandi al metallo. Quindi, gli orbitali dsono simili in energia l'uno all'altro, ma non sono tutti degenerati. Ciò consente ai complessi di essere diamagnetici, con tutti gli elettroni accoppiati, o paramagnetici, con elettroni spaiati.

Conoscere il numero di elettroni spaiati in un complesso metallico può fornire indizi sullo stato di ossidazione e sulla geometria del complesso metallico, nonché sulla forza del campo del ligando (campo cristallino) dei ligandi. Queste proprietà hanno un grande impatto sulla spettroscopia e sulla reattività dei complessi di metalli di transizione, e quindi sono importanti da capire.

Un modo per contare il numero di elettroni spaiati è misurare la suscettibilità magnetica, χ, del composto di coordinazione. La suscettibilità magnetica è la misura della magnetizzazione di un materiale (o composto) quando viene inserito in un campo magnetico applicato. Gli elettroni accoppiati sono leggermente respinti da un campo magnetico applicato e questa repulsione aumenta linearmente all'aumentare della forza del campo magnetico. D'altra parte, gli elettroni spaiati sono attratti (in misura maggiore) da un campo magnetico e l'attrazione aumenta linearmente con l'intensità del campo magnetico. Pertanto, qualsiasi composto con elettroni spaiati sarà attratto da un campo magnetico. 1

Quando misuriamo la suscettibilità magnetica, otteniamo informazioni sul numero di elettroni spaiati dal momento magnetico, μ. La suscettibilità magnetica è correlata al momento magnetico, μ dall'equazione 12:

Equation 1 (1)

La costante Equation 2 = [(3kB)/Nβ2)], dove β= magnetone di Bohr dell'elettrone (0,93 x 10-20 erg gauss-1), N = numero di Avogadro, e kB = costante di Boltzmann
XM= suscettibilità magnetica molare (cm3/mol)
T = temperatura (K)
μ = momento magnetico, misurato in unità di magnetone di Bohr, μB = 9,27 x 10-24 JT-1

Il momento magnetico per i complessi è dato dall'equazione 21:

Equation 3 (2)

g = rapporto giromagnetico = 2,00023 μB
S = numero quantico di spin = ∑ms = [numero di elettroni spaiati, n]/2
L = numero quantico orbitale = ∑ml

Questa equazione ha sia contributi orbitali che di spin. Per i complessi di metalli di transizione di prima fila, il contributo orbitale è piccolo e quindi può essere omesso, quindi il momento magnetico di solo spin è dato dall'equazione 3:

Equation 4 (3)

Il momento magnetico di sola spin può quindi dare direttamente il numero di elettroni spaiati. Questa approssimazione può essere fatta anche per i metalli più pesanti, sebbene i contributi orbitali possano essere significativi per i metalli di transizione di seconda e terza fila. Questo contributo può essere così significativo da gonfiare il momento magnetico abbastanza che il composto sembra avere più elettroni spaiati di quanti ne abbia. Pertanto, potrebbe essere necessaria un'ulteriore caratterizzazione per questi complessi.

In questo esperimento, il momento magnetico della soluzione di tris(acetilacetonato)ferro(III) (Fe(acac)3) viene determinato sperimentalmente usando il metodo evans nel cloroformio.

Procedura

1. Preparazione dell'inserto capillare

  1. Usando un accendino o un'altra fiamma a gas, sciogliere la punta di una lunga pipetta Pasteur. Ruotare delicatamente la punta della pipetta nella fiamma fino a formare una piccola lampadina. Lasciare raffreddare il bicchiere.
  2. In un flaconcino a scintillazione, preparare una soluzione 50:1 (volume) di cloroformio deuterato:proteo. Pipettare 2 mL di solvente deerato, e a questo aggiungere 40 μL di solvente proteo. Chiudere il flaconcino.
  3. Aggiungere con at

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Risultati

Risultatixperimental

..

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Riferimenti
  1. Miessler, G. L., Fischer, P. J., Tarr, D. A. Inorganic Chemistry. 5 ed. Pearson. (2014).
  2. Drago, R. S. Physical Methods for Chemists. 2 ed. Saunders College Publishing. (1992).
  3. Girolami, G. S., Rauchfuss, T. B., Angelici, R. J. Synthesis and Technique in Inorganic Chemistry: A Laboratory Manual. 3 ed. University Science Books. Sausalito, CA, (1999).
Tags
Evans MethodUnpaired ElectronsSolution state Metal ComplexesParamagneticDiamagneticNMR SpectroscopyReactivity PredictionMagnetic MomentSpin only Magnetic MomentOrbital ContributionsMagnetic SusceptibilityChemical Shift

Vai a...

0:00

Overview

1:03

Principles of the Evans Method

3:27

Capillary Insert Preparation

4:59

Sample Preparation and Data Collection

5:58

Results

6:41

Applications

7:53

Summary

Video da questa raccolta:

article

Now Playing

Il metodo di Evans

Inorganic Chemistry

67.5K Visualizzazioni

article

Sintesi di un Ti(III) metallocene utilizzando la tecnica della linea Schlenk

Inorganic Chemistry

31.4K Visualizzazioni

article

Scatola a guanti (Glove Box) e sensori di impurezze

Inorganic Chemistry

18.5K Visualizzazioni

article

Purificazione del ferrocene per sublimazione

Inorganic Chemistry

54.1K Visualizzazioni

article

Diffrazione a raggi X su cristallo singolo e su polveri

Inorganic Chemistry

103.3K Visualizzazioni

article

Spettroscopia di risonanza paramagnetica elettronica (EPR)

Inorganic Chemistry

25.3K Visualizzazioni

article

Spettroscopia Mössbauer

Inorganic Chemistry

21.9K Visualizzazioni

article

Interazione acido-base di Lewis in Ph3P-BH3

Inorganic Chemistry

38.7K Visualizzazioni

article

Struttura del ferrocene

Inorganic Chemistry

78.5K Visualizzazioni

article

Applicazione della teoria dei gruppi nella spettroscopia infrarossa

Inorganic Chemistry

44.8K Visualizzazioni

article

Teoria degli orbitali molecolari

Inorganic Chemistry

35.0K Visualizzazioni

article

Paddlewheel a quadruplo legame metallo-metallo

Inorganic Chemistry

15.2K Visualizzazioni

article

Celle di Grätzel (Dye-sensitized Solar Cells)

Inorganic Chemistry

15.5K Visualizzazioni

article

Sintesi di un complesso di cobalto (II) legato ad ossigeno

Inorganic Chemistry

51.2K Visualizzazioni

article

Inizio fotochimico di una reazione di polimerizzazione radicalica

Inorganic Chemistry

16.6K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati

Fe(acac)3 Cloroformio
m (g) 0.0051 0.874
MW (g/mol) 353.17 n/d
n (mol) 1,44⋅10-5