Optical Materialography Part 1: Sample Preparation

Panoramica

Source: Faisal Alamgir, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA

The imaging of microscopic structures of solid materials, and the analysis of the structural components imaged, is known as materialography. Qualitative information such as, for example, whether or not there is porosity in the material, what the size and shape distribution of the grains look like, or whether there is anisotropy to the microstructure can be directly observed. We will see in Part 2 of the Materialography series, however, that statistical methods allow us to quantitatively measure these microstructural features and translate the analysis from a two-dimensional cross section to the three dimensional structure of a material sample.

This presentation will provide an overview of the techniques and procedures involved in preparing solid material samples for optical microscopy. While materialography can be conducted with optical as well as electron-based microscopy, this presentation will focus on the sample preparation specifically for optical microscopy. It should be noted, however, that a sample prepared for optical materialography can be used for scanning electron microscopy as well with minimum, if any, additional steps.

Procedura
  1. The sample examined in this video is a metal nut. First cut the sample normal to the hoop plane using a linear precision saw in order to isolate undamaged microstructural features for later viewing.
  2. Mount the specimen with the side to be imaged facing down on a mounting press. You must, of course, make sure that the sample is small enough to fit in the die cavity of the press, both laterally and vertically.
  3. Fill the remaining volume of the mounting press cavity with Bakelite, a thermosetting resin.
  4. Press

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Risultati

From the series of images in Figure 1, particularly from the etched sample (Figure 1e), one can observe that the powder pressing process by which this sample was made rendered the grains to have non-circular, elongated shapes, with non-isotropic grain orientation. There is a significant amount of porosity retained in the material through this processing. Part 2 of the Materialography series will explore the statistics of the grai

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tags
Optical MaterialographySample PreparationMicroscopic StructureSolid MaterialsPorosityGrainsIsotropyQualitative AnalysisQuantitative AnalysisProbing ToolLightElectron BeamCuttingMountingPolishingEtchingIsotropic MicrostructuresAnisotropic Samples

Vai a...

0:07

Overview

0:49

Principles of Sample Preparation for Optical Materialography

3:37

Protocol

6:11

Applications

7:09

Summary

Video da questa raccolta:

article

Now Playing

Optical Materialography Part 1: Sample Preparation

Materials Engineering

15.2K Visualizzazioni

article

Materialografia ottica parte 2: analisi dell'immagine

Materials Engineering

10.8K Visualizzazioni

article

Spettroscopia fotoelettronica a raggi X

Materials Engineering

21.2K Visualizzazioni

article

Diffrazione dei raggi X

Materials Engineering

86.7K Visualizzazioni

article

Fasci ionici focalizzati

Materials Engineering

8.7K Visualizzazioni

article

Solidificazione direzionale e stabilizzazione di fase

Materials Engineering

6.4K Visualizzazioni

article

Calorimetria differenziale a scansione

Materials Engineering

35.8K Visualizzazioni

article

Diffusività termica e metodo del flash laser

Materials Engineering

13.1K Visualizzazioni

article

Galvanizzazione di pellicole sottili

Materials Engineering

19.4K Visualizzazioni

article

Analisi dell'espansione termica tramite dilatometria

Materials Engineering

15.5K Visualizzazioni

article

La spettroscopia di impedenza elettrochimica

Materials Engineering

22.8K Visualizzazioni

article

Materiali compositi a matrice ceramica e le loro proprietà di flessione

Materials Engineering

7.9K Visualizzazioni

article

Leghe nanocristalline e stabilità dimensionale dei nano-grani

Materials Engineering

5.0K Visualizzazioni

article

Sintesi di idrogel

Materials Engineering

23.3K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati