Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The protocol presents in vitro transcription (IVT) of chemically modified mRNA, cationic liposome preparation, and functional analysis of liposome enabled mRNA transfections in mammalian cells.

Abstract

In recent years, chemically modified messenger RNA (mRNA) has emerged as a potent nucleic acid molecule for developing a wide range of therapeutic applications, including a novel class of vaccines, protein replacement therapies, and immune therapies. Among delivery vectors, lipid nanoparticles are found to be safer and more effective in delivering RNA molecules (e.g., siRNA, miRNA, mRNA) and a few products are already in clinical use. To demonstrate lipid nanoparticle-mediated mRNA delivery, we present an optimized protocol for the synthesis of functional me1Ψ-UTP modified eGFP mRNA, the preparation of cationic liposomes, the electrostatic complex formation of mRNA with cationic liposomes, and the evaluation of transfection efficiencies in mammalian cells. The results demonstrate that these modifications efficiently improved the stability of mRNA when delivered with cationic liposomes and increased the eGFP mRNA translation efficiency and stability in mammalian cells. This protocol can be used to synthesize the desired mRNA and transfect with cationic liposomes for target gene expression in mammalian cells.

Introduction

As a therapeutic molecule, mRNA offers several advantages due to its non-integrative nature and its ability to transfect non-mitotic cells when compared to plasmid DNA (pDNA)1. Although mRNA delivery was demonstrated in the early 1990s, therapeutic applications were limited due to its lack of stability, its lack of immune activation, and poor translational efficiency2. Recently identified chemical modifications, such as pseudouridine 5'-triphosphate (Ψ-UTP) and methyl pseudouridine 5'-triphosphate (me1Ψ-UTP) on mRNA, helped to overcome these limitations, revolutionized mRNA research, and in turn, made m....

Protocol

1. Production of me1 Ψ-UTP modified mRNA

  1. In vitro transcription (IVT) DNA template preparation
    NOTE: For IVT DNA template (T7 promoter- open reading frame (ORF) of the gene) preparation, design a gene-specific primer set for the gene of interest. Add the T7 promoter (5'-NNNNNNTAATACGACTCACTATAGGGNNNNNN-3') sequence before gene-specific forward primer.
    1. Prepare PCR reaction mixture as described in Table 1.
      NOTE: Run at least four PCR reactions to increase.......

Representative Results

We optimized the protocol for me1Ψ-UTP modified mRNA production, liposome preparation, and mRNA transfection experiments with cationic liposomes into multiple mammalian cells (Figure 1). To synthesize mRNA, the mammalian codon-optimized eGFP IVT template was amplified from the mEGFP-N1 mammalian expression vector and purified by organic extraction/ethanol precipitation method (Figure 2). Later, me1Ψ-UTP modified RNA and mRNA were produced by the IVT pr.......

Discussion

Therapeutic applications of unmodified mRNAs have been limited due to their shorter half-life and their ability to activate intracellular innate immune responses, which in turn lead to poor protein expression in transfected cells11. Katalin et al. demonstrated that RNA containing modified nucleosides such as m5C, m6A, ΨU, and me1Ψ-UTP could avoid TLR activation12. More importantly, incorporation of ΨU or me1Ψ-UTP in IVT mRNA showed superior translational.......

Acknowledgements

MS thanks the Department of Biotechnology, India, for the financial support (BT/PR25841/GET/119/162/2017), Dr Alok Srivastava, Head, CSCR, Vellore, for his support and Dr Sandhya, CSCR core facilities for imaging and FACS experiments. We thank R. Harikrishna Reddy and Rajkumar Banerjee, Applied Biology Division, CSIR-Indian Institute of Chemical Technology Uppal Road, Tarnaka, Hyderabad, 500 007, TS, India, for their help in analyzing physico-chemical data of the liposomes. Vigneshwaran V, and Joshua A, CSCR for their help in video making.

....

Materials

NameCompanyCatalog NumberComments
AgaroseLonza50004
Bath sonicatorDNMANM IndustriesUSC-100
Cationic lipidSynthesized in the lab
ChlorofromMP biomedicals67-66-3"Caution"
CholesterolHimediaGRM335
DEPC waterSRL BioLit66886
DMEMLonza12-604F
DNA LadderGeneDireXDM010-R50C
DOPETCID4251
EDTA sodium saltMP biomedicals194822
EthanolHaymanF204325"Caution"
Fetal bovine serumGibco10270
Flow cytometryBDFACS Celesta
Fluroscence MicroscopeLeicaMI6000B
Gel documentation systemCell BiosciencesFlurochem E
Glacial acetic acidFisher Scientific85801"Caution"
mEGFP-N1, Mammalian expression vectorAddgene54767
N1-Methylpseudo-UTPJena BioscienceNU-890
Phenol:chloroform:isoamyl alchol (25:24:1), pH 8.0SRL BioLit136112-00-0"Caution"
Phosphate Buffer Saline (PBS), pH 7.4CellCloneCC3041
Probe sonicatorSonics Vibra CellsVCX130
RNA ladderNEBN0362S
RNase inhibitorThermo ScientificN8080119
SafeView dyeabmG108
Sodium acetateSigmaS7545
ThermocyclerApplied biosystems4375786
ThermomixerEppendrof22331
Tris bufferSRL BioLit71033
TrypsinGibco25200056

References

  1. Sahin, U., Kariko, K., Tureci, O. mRNA-based therapeutics--developing a new class of drugs. Nature Reviews Drug Discovery. 13 (10), 759-780 (2014).
  2. Schlake, T., Thess, A., Fotin-Mleczek, M., Kallen, K. J. Developing mRNA-vaccine technologies.

Explore More Articles

Lipid NanoparticlesChemically Modified MRNAMRNA DeliveryCationic LiposomesTransfection EfficiencyEGFP MRNAGene ExpressionTherapeutic ApplicationsProtein ReplacementImmune TherapySiRNAMiRNA

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved