Method Article
我々は、ラベルフリーの動力学的特性によってパパインには、いくつかのシスタチンBの変異体の結合の構造機能解析のためのビアコアのX100を使用してタンパク質相互作用解析を適用する。キャリブレーションフリーの濃度分析(シミュレーションプロジェクト)は、検量線を必要とせずに保持結合活性を有するタンパク質の濃度を測定する。我々はシミュレーションプロジェクトを使用して濃度のその確認は、動態解析の信頼性を高め、速度定数が確実に組換えタンパク質の活性が低下している場合でも決定できることを示している。
本研究では、我々は、ビアコアのX100を使ってリアルタイムラベルフリー解析により、ウシのシステインプロテアーゼ阻害剤のシスタチンBとパパイン(図1)、植物のシステインプロテアーゼの触媒的不活性型との間の相互作用を探る。パパインとの相互作用の分野での点突然変異を持ついくつかのシスタチンBの亜種は、生産されています。各シスタチンBのバリアントのために我々は、キャリブレーションフリーの濃度分析を用いてその特異的結合濃度(シミュレーションプロジェクト)を決定し、によって決定される総タンパク質濃度で得られた値を比較する
図1。パパインとシスタチンB複合体(青)(黄)の三次元構造。変異シスタチンBの残基は赤で表示されます。
1。ビアコアシステムを用いたラベルフリー相互作用解析の原理
ビアコアシステムを用いた典型的なラベルフリーの結合実験では、生体分子は、"配位子が"センサーチップの表面に取り付けられていると呼ばれる。フローチャネルのシステムでは検出が行われるチップ表面に接触する、"分析物"と呼ばれるその結合パートナーを、もたらす。分析物がリガンドに結合すると、表面での質量の蓄積の結果としての変化は、表面プラズモン共鳴(SPR)により検出される。 SPRの応答は、結合分析物の量に比例します。
バインディングがリアルタイムで測定されるため、特定の相互作用の速度論的会合および解離速度定数を決定することができます。これらの定数から、それは一定の平衡解離と親和性を計算することが可能です。それは、定常状態のデータバインディングの親和性を計算することも可能です。同様の方法論はまた、特に表面にリガンドに結合するタンパク質の濃度を決定するために使用することができます。
2。タンパク質 - タンパク質相互作用の動力学的特性の分析
ビアコアX100では、速度論的解析は、シングルサイクルカイネティクスを使用して実行することができます。シングルサイクルカイネティクスの実験では、分析物の濃度系列は、注射の間に表面の再生をすることなく、単一の分析サイクルに注入されます。それは適切な再生条件を見つけることが困難な場合そのため、シングルサイクルカイネティクスは、動態解析を可能にします。
運動実験のデータが収集されたら、ビアコアX100の評価ソフトウェアは、相互作用モデルにデータをフィッティングすることによりK A、K D、およびK Dの値を生成します。
3。タンパク質濃度を測定するためのアプローチ
生体分子間の相互作用を分析すると、その機能を理解する上で重要である。核酸に、他のタンパク質へのタンパク質の結合を特徴づける、または小分子には、生化学研究の基本となるものである、と創薬を含む他の多くの分野での使用を検出します。
対話する2つのタンパク質間の相互作用のカイネティクスの正確な測定のためには、検体として使用される実験サンプルに特異的に結合するタンパク質の濃度を知ることが不可欠です。 280やのような比色アッセイの分光光度計の読みは、ブラッドフォード試薬を採用するものが一般的に総タンパク質濃度を決定するために使用されます。しかし、タンパク質の不純物は、結果に影響を与えます。さらに重要なことは、タンパク質の両方のアクティブおよび非アクティブなフォームは、総タンパク質濃度に含まれています。特に誤った折り畳みに起因する非アクティブになる可能性があります換えタンパク質の場合には、サンプル中の特異的結合タンパク質の割合を決定することが重要です。
ビアコアX100で、特異的結合活性に関連する濃度は、いずれかの既知の標準から派生した検量線との結合反応のレベルの比較によって、以上の最近導入された方法論キャリブレーションフリーの濃度分析(シミュレーションプロジェクト)を使用して決定することができます。シミュレーションプロジェクトでは、標準に依存しません。したがって、シミュレーションプロジェクトでは、基準が通常利用できないタンパク質の変異体を、勉強の場合に特に便利です。
シミュレーションプロジェクトの実験では、初期結合率は、チップ表面へのサンプルの拡散が律速される条件下での異なる流量で測定されます。分析物の拡散係数、初期結合速度の1,2から特異的結合濃度を計算するときに、フローセルと流量の大きさが考慮されます。
動力学の実験では、分析物の濃度は、運動の会合速度定数と実験データから親和性の計算に使用されています。シミュレーションプロジェクトとビアコアシステムの動力学的測定は、両方とも同じ相互作用の性質に依存しています。したがって、ビアコア分析によって決定される特異的な結合の濃度ではなく、総タンパク質濃度を使用して、結果の信頼性を向上させます。
4。シスタチンBとパパインの相互作用を特徴づけるビアコア分析を使用して、
哺乳類シスタチンBはこれらのタンパク質は、主にnonsに関与している主にパパインのようなシステインプロテアーゼ、カテプシンB、H、K、LとSの可逆的、競争とタイト結合蛋白質の阻害剤です。選択科目細胞内タンパク質分解。 Cystatinsは、これらの酵素によって不適当なタンパク質分解から細胞や組織を保護するためと推定されています。彼らはまた、寄生虫やウイルスからシステインプロテイナーゼを不活性化し、そのような感染性病原体の侵入に対する防御に参加することができます。さらに、cystatinsは頻繁に構造機能研究におけるモデル酵素として使用されるパパインのようないくつかの植物のシステインプロテイナーゼを、抑制する。 N -およびC末端二ヘアピンループ(によって提供される、阻害剤の側から、2つのタンパク質間相互作用は疎水性接触によって支配されているパパイン3に示すように、とシスタチンBの複合体の三次元構造図1)。本研究では、我々は、C -末端の重要性とパパインの相互作用の分野で点突然変異を含むウシシスタチンBのバリアントを使用してパパインにバインドするためのシスタチンBの第二の結合ループを調べます。我々は、最初の特異的結合使用される4つのシスタチンBの亜種の濃度だけでなく、野生型タンパク質のことを決定する。アクティブシスタチンBの特異的結合濃度が決定されると、野生型およびパパインへの結合シスタチンBの突然変異体の速度と親和性定数はBiacore X100を使用して測定する。
5。楽器と試薬
リガンドMMTS -パパインの6.Immobilization
シミュレーションプロジェクト分析のためのMMTS -パパインの共有結合
シミュレーションプロジェクトでは、速度が表面に検体分子の拡散(大量輸送の制限)によって制限される条件下では結合率の測定に依存しています。これは、リガンドの高い固定化レベルで愛用されています。 MMTS -パパインの固定化を設定し、ビアコアX100 Controlソフトウェアの固定化ウィザードを使用して実行した。
全体のカップリング方法は、フローセル2に固定化〜3000 RU MMTS -パパインになるはずです。
動態解析のためのMMTS -パパインの共有結合
同じ手順は、速度論的解析では、固定化のレベルが拡散によって制限になって結合率を避けるために低くする必要があることを除いて、実際の速度論的解析のためにMMTS -パパインの固定化に使用されます。フローセル1を基準面として使用するためにもこのステップで変更されません。
カップリングするノイズレベルは、この手順の後に約50 RUでなければなりません。
7。シミュレーションプロジェクトのアッセイを使用してシスタチンBの濃度の決定
サンプル | 280(%)との関係でシミュレーションプロジェクト |
野生型 | 94 |
Cys3Ser/His75Gly | 101 |
Cys3Ser/Leu73Gly | 9 |
Cys3Ser/Tyr97Ala | 99 |
Cys3Ser | 83 |
8。パパインに結合シスタチンBの動態を測定
サンプル | K A(M -1 s -1と ) | K D(S -1) | K D(M) |
野生型 | 1.8 × 10 6 | 0.41 × 10 -3 | 2.3 × 10 -10 |
Cys3Ser/His75Gly | 1.1 × 10 6 | 1.7 × 10 -3 | 1.5 × 10 -9 |
Cys3Ser/Leu73Gly | 1.1 × 10 6 | 23 × 10 -3 | 2.2 × 10 -8 |
Cys3Ser/Tyr97Ala | 1.7 × 10 6 | 12 × 10 -3 | 7.1 × 10 -9 |
Cys3Ser | 0.9 × 10 6 | 0.53 × 10 -3 | 5.8 × 10 -10 |
この作業では、4つの変異体と野生型シスタチンBは、シスタチンBとパパインの相互作用のための第二の結合ループとC末端の重要性を評価するために生産された。本研究では優位性と特異的結合濃度を決定し、構造と機能の関係を理解するために、タンパク質 - タンパク質相互作用の動態を解析するBiacoreのX100を使用しての使いやすさを示した。我々は、総タンパク質濃度の測定はこの場合には結合親和性と速度の決定に大きな測定誤差を導入する結合活性を、減少しているタンパク質変異体を明らかにしないことを示した。シスタチンBの亜種の特異的結合濃度はBiacore X100をとシミュレーションプロジェクトを使用して測定した。動態解析への入力としてシミュレーションプロジェクトで濃度測定を使用することにより相互作用のメカニズムの右の解釈を可能にする、信頼性の高い率との親和性定数をもたらした。
kはわずかに影響を受けたのに対し、変異体の減少親和性は、ほぼ独占的に増加したK D -値によるものであった。この動作は、2番目の結合ループ領域とC末端の両方がパパインに対する阻害剤の結合率のために重要ではないことを示しています。その代わり、彼らは主に複合体が形成された後、酵素に添付された阻害剤を保つことによって結合親和性に寄与する。
Name | Company | Catalog Number | Comments |
Biacore™ X100 System | GE Healthcare | BR-1100-73 | http://www.biacore.com/lifesciences/products/systems_overview/x100/system_information/index.html |
Biacore™ X100 Plus Package | GE Healthcare | BR-1007-98 | http://www.biacore.com/lifesciences/products/systems_overview/x100/system_information/index.html |
Sensor Chip CM5 | GE Healthcare | BR-1000-14 | http://www.biacore.com/lifesciences/products/systems_overview/x100/system_information/index.html |
Amine Coupling Kit | GE Healthcare | BR-1000-50 | |
Acetate buffer pH 4.5, 50 ml | GE Healthcare | BR-1003-50 | |
HBS-EP+ buffer 10X, 4 x 50 ml | GE Healthcare | BR-1008-26 | |
Plastic Vials 11 mm | GE Healthcare | BR-1002-87 | |
Rubber caps, type 2 | GE Healthcare | BR-1004-11 |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved