JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

マクロファージは、長い自然免疫と獲得免疫応答の重要な構成要素として認識されている。マクロファージや微生物間の相互作用の進化遺伝的、および生化学的な側面に関する知識の最近の爆発はマクロファージへの科学的関心をリニューアルしました。この記事では、マウスの骨髄からマクロファージを差別化する方法を説明している。

要約

マクロファージは自然免疫と獲得免疫応答の重要なコンポーネントであり、彼らは、それらの強力な殺菌活動の外国の侵略者に対する防御の最前線である。マクロファージは体内に広く分布し、リンパ器官、肝臓、肺、胃腸管、中枢神経系、骨、及び皮膚に存在する。ため、その配分のために、それらは、生理学的及び病理学的プロセスの広い範囲に関与している。マクロファージは、微小環境の変化を認識すると、組織の恒常性を維持することができる汎用性の高い細胞である。数々の病原体は、生き残るためにトロイの木馬としてマクロファージを使用中に複製して、人間と動物の両方に感染し、体全体に伝播させるためのメカニズムを進化させてきた。宿主 - 病原体相互作用の進化遺伝的および生化学的な側面に興味の最近の爆発は、マクロファージに関する科学的関心をリニューアルしました。ここでは、説明します宿主 - 病原体相互作用だけでなく、他のプロセスを研究するためにマクロファージを大量に提供するマウス骨髄からマクロファージを分離し、育成するための手順。

概要

マクロファージ機能の重要な側面は、自然免疫と獲得免疫におけるその役割です。そのため不活性粒子、細菌や寄生虫を貪食する能力のため、マクロファージは、外国の侵略に対する防御の第一線である。内在化されると、微生物はファゴリソソーム内で分解される。マクロファージはまた、Tリンパ球などの他の免疫細胞に募集のための信号と抗原を提示を送信します。マクロファージは単球に由来している。単球は、骨髄性幹細胞から骨髄で発生し、それらはマクロファージに分化し、末梢血および種々の組織に移動する。これは、健康な成体マウスは、様々な器官および組織に体全体に分布している約10 8マクロファージ( 1)1,2 含有すると推定される。マクロファージは、それらの微小環境の3,4に適応する能力の優れた表現型および機能的多様性を示す。最も重要なmacropヘイグプロパティは、微生物を貪食し、それらを破壊する能力によって定義され、その殺菌活性、である。食細胞応答は、微生物の接触によって刺激される複雑なシグナル伝達ネットワークの活性化によって定義され、したがって、マクロファージは、多様な刺激に応答して、適宜遺伝子発現を調節する。貪食した後、微生物はゴリソソームと呼ばれる構造で排除されますが、多くの病原性微生物はマクロファージ5の殺菌機能を破壊するための戦略を開発した。異なる微生物種によって利用されるSubversionのメカニズムの多様性は、食作用のプロセス6およびファゴリソソーム生合成の複雑さを証明するものです。感染症は、主要なヒトの健康上の問題であり、数多くのメカニズムや分子は、マクロファージの抗菌活動に参加しています。さらに、微生物によってハイジャックされた殺菌特性のターゲットは不明のままであるため、Eがありますマクロファージに関する科学的関心をリニューアルしました宿主 - 病原体相互作用の進化遺伝的および生化学的な側面への関心のXPLOSION。現在、分野の研究の大部分は貪食能、サイトカイン産生と酸化的バーストの調節に初代マクロファージとは異なり、マクロファージ細胞株、上で行われます。さらに、それらは、顕微鏡検査のためにあまり適していない。インタラクション·マクロファージ·病原体を調べるためには、より多くの生理学的な特徴を示すような骨髄由来マクロファージ(BMDMs)などの主要なマクロファージを、使用することをお勧めします。これらのマクロファージは、トランスジェニックマウスから直接単離する可能性があり、例えば、レンチウイルストランスフェクションなどの新しい技術の利用可能性と、それらの遺伝子発現プロフィールが、遺伝子の過剰発現またはRNA干渉によって変化させることができるので、また、遺伝子改変BMDMs上で動作することができる。ここでは、マウスの骨mを区別するための手順を記載様々な機能のために7日間でマクロファージを多数提供しますマクロファージに矢印は、そのようなプロテオミクス7、トランスクリプトミクス8として分析して、細胞内輸送は9、動的スタディ10、遺伝子スクリーニング(RNAi)とし、薬物スクリーニング11を研究している。

プロトコル

倫理に関する声明

規則に合うエクスマルセイユ大学の動物取扱プロトコル私たちの施設内動物倫理委員会によって承認された「Conseilの科学研究·デュ·センタード·形成エトデルシェルシュ実験メディコ - 外科的」(エリック·GhigoにCFREMC、プロジェクト許可証10から300122013)のDécretNは1987年10月19日の87から848の°。実験はFacultéデMEDECI​​NE·デ·ラ·ティモーネ(エリックGhigoの実験の許可番号13.385)で実施した。

1。材料および培養培地の準備

  1. 2鉗子、2はさみ、2外科ブレード、乳鉢と乳棒を殺菌。
  2. 10%ウシ胎児血清(FCS)を含有する完全DMEMを得、2 mMグルタミン、100 U / mlペニシリンおよび100μg/ mlのストレプトマイシン。
  3. 1X PBSを取得するために、滅菌蒸留水で10倍のPBSを希釈。
  4. 氷のように冷たい1X PBSで、氷のように冷たい完全DMEM、完全DMEM WAを取得37℃にrmed

2。 L929細胞上清の調製

  1. 37℃、5%CO 2で完全DMEM中で密集するL929細胞(20 175cm 2のフラスコ)成長する。

注:因子(GM-CSF)を刺激する顆粒球-マクロファージコロニーは、マクロファージ12に造血細胞の分化を誘導するために必要とされる。 L929細胞は、GM-CSFを生産する。

  1. 合流点に、新しい完全DMEMで培養培地を交換してください。 10日間、32℃、5%のCO 2へのフラスコを転送します。
  2. 収集、プールと10分間750×gで上清を遠心する。細胞ペレットを廃棄する。
  3. -20℃で15 mlチューブや店舗内の店舗上清

3。骨髄由来マクロファージ(BMDM)の準備

  1. 頚椎脱臼により1マウスを生け贄に捧げる。
    1. 実験を通して無菌外科刃を使用してください。 70%のALCOで皮膚を消毒HOL。各後肢の上部に切開を行い、筋肉を露出させ、足の方に皮膚をプルダウン。
    2. 後ろ足を切断し、滅菌したはさみや滅菌ピンセットで皮膚を取り除きます。無菌の氷冷した1×PBS(5ミリリットル)を含む滅菌ペトリ皿(35/10ミリメートル)以内に足を置きます。
    3. 無菌はさみやピンセットで骨に付着している肉と筋肉を外します。
  2. 氷のように冷たい、無菌1X PBS(5ミリリットル)を含む新しい滅菌ペトリ皿(35/10ミリメートル)に骨を移す。 5ミリリットルの氷冷滅菌1×PBSで骨を2回洗浄する。
  3. 5ミリリットルの氷冷滅菌1X PBSを含む無菌乳鉢に骨を移す。
  4. 無菌ハサミとの共同での大腿骨から脛骨を切った。乳棒を用いて5ミリリットルの氷冷滅菌1X PBSを含む無菌乳鉢で静かに骨を粉砕。
  5. 氷のように冷たい15ミリリットルチューブに上清を収集します。このステップ3回繰り返します。
  6. 70μmのナイロン細胞STRAでろ過固体断片を除去するためにINER。 4℃で10分間450×gでろ液を遠心分離
  7. そっと上澄みを捨てる。 10mlの30秒間の赤血球溶解緩衝液をペレットに解離する。 20ミリリットルの氷のように冷たい、完全DMEMを追加します。

注:このステップの目的は、赤血球を汚染除去することであるため、このステップは、赤血球溶解緩衝液によって造血細胞変質を避けるために、2分以内に行わなければならない。

  1. 4℃で10分間450×gで遠心分離そっと上澄みを捨てる。 37℃に温められた20ミリリットル完全DMEMにペレットを解離
  2. 2ペトリ皿(100/20ミリメートル)に解離細胞を移す。 37℃で4時間、それらをインキュベート
  3. 室温で50 mlチューブに上清を収集します。常在性マクロファージが含まれている料理を捨てる。

注記:このステップの目的は、常駐骨marroを排除することである培養処理プラスチックに付着する能力によってワットマクロファージ。これらの常在マクロファージは、他の実験において使用され得る。

  1. 4℃で10分間450×gで回収した上清を遠心分離上清を捨てる。
  2. 10ミリリットル15パーセントL929細胞上清を含む完全DMEM中で静かにペレットを解離。 40μmのナイロン細胞濾過器細胞をフィルタリングします。
  3. ろ液を回復します。 140ミリリットル15パーセントL929細胞培地を補ってきた完全DMEMに収集されたろ液(10ミリリットル)を追加します。
  4. ペトリ皿(15ペトリ皿、20分の100 mm)のあたりの細胞懸濁液10mlに分配する。 37℃、5%CO 2で細胞をインキュベートする。
  5. 3日間、細胞を増殖させる
  6. 10ミリリットル15パーセントL929で補充された完全DMEMを追加します。 4追加日間細胞をインキュベートする。

注:倒立顕微鏡で定期的に細胞増殖をモニターし(ステップ3.14から3.16)。付着性マクロファージはなり培養3日後に観察した。

4。収穫BMDMs

  1. 上清を取り除きます。完全DMEMで洗浄BMDMs 2回
  2. 5ミリリットルを37℃に加温された完全DMEMを追加静かにラバーポリスマンでこすることによってBMDMsを外します。
  3. 10分間450×gで50ミリリットル試験管や遠心分離器でBMDMsを収集します。静かに20ミリリットルの完全DMEM中で細胞ペレットを解離する。
  4. パンブルーの存在下でBMDMsを数える(10%以下の死亡率が観察されないはずである)。

注意:一般に、約6〜7.5×10 7のマクロファージが、マクロファージの15ペトリ皿(100/20ミリメートル)から得られる。約4〜5×10 6のマクロファージ/シャーレ(100/20ミリメートル)があります。

  1. 実験に必要とされるBMDMsを準備します。 37℃で完全培地で16時間後、5%のCO 2が 、マクロファージが再び支持体に付着する。

5。 BMDMsを保存する

  1. 孤立BMDMs(ステップ4.3)を収集。 10分間450×gで遠心分離する。注:BMDMsを液体窒素中で凍結されてもよい。
  2. 各アンプルに4×10 6細胞/ mlピペット1mlを、最終濃度10%DMSOおよび90%FCSからなる凍結培地に再懸濁した細胞ペレット。
  3. 1℃/分の冷却速度で細胞を凍結する。 24時間後、長期保存のために液体窒素容器をアンプルに移す。

結果

この方法の目的は、容易に数日後にマクロファージを大量に得ることであった。骨髄細胞の調製は、 図1に示されている。後肢の骨を収集し、乳鉢で潰した。常在性マクロファージは、骨髄細胞調製物から除去した後、骨髄細胞をGM-CSF(0日目)とインキュベートした。 3日後、培養前のラウンドと非接着であった細胞は、マクロファージに分化し、( 図1A)を接着す?...

ディスカッション

ここに説明されたプロトコルは、BMDMsを大量に製造する方法を詳しく説明します。 BMDMは、一次細胞であり、未成熟でマクロファージ細胞株とは対照的に、成熟があるので、生物学的機能及び単球から分化したマクロファージの特性を有する。 BMDMsは、遺伝的スクリーニング(RNAi)と、薬物スクリーニング、機能的研究、宿主 - 病原体相互作用研究および調査の他の多くの分野に使用するこ?...

開示事項

利害の宣言された関係はありません。

謝辞

この作品は、CNRS(PICS EGに2012年から2014年)によって、およびRegioneカンパニア州(のLR N.5、ジョヴァンナモットラに2002年3月28日)からの助成金によってサポートされていました。フィリッポ·コンティは、科学的な協力財団'' Infectiopoleシュッの仲間である。''ニコラBoucheritが研究技術のためのフランスの省の仲間です。資金源は、研究デザイン、データ収集、データ分析、公開することを決定、または原稿の準備に何の役割がありませんでした。

資料

NameCompanyCatalog NumberComments
DMEMGibco Life Technologies21969-035
Fetal Calf SerumGibco Life Technologies10270
Penicillin/StreptomycinGibco Life Technologies15070
GlutamineGibco Life Technologies25030-024
PBS (10x)LonzaBEM515F
Red Blood Cell Lysis bufferSigmaR7757
Cell strainer 70 μm NylonBD Falcon352350
Cell strainer 40 μm NylonBD Falcon352340
50 ml tubesany suppliern/a
15 ml tubesany suppliern/a
Petri dishes (100/20 mm)any suppliern/aculture treated
Petri dishes (35/10 mm)any suppliern/a

参考文献

  1. Rutherford, M. S., Witsell, A., Schook, L. B. Mechanisms generating functionally heterogeneous macrophages: chaos revisited. J. Leukocyte Biol. 53, 602-618 (1993).
  2. Van Furth, R., Gallin, J. I., Goldstein, I. M., Snyderman, R. . Inflammation: Basic Principles and Clinical Correlates. 112, 325-336 (1992).
  3. Adams, D., Halmiton, T., Gallin, J. I., Goldstein, I. M., Snyderman, R. . Inflammation: Basic Principles and Clinical Correlates. 112, 325-336 (1992).
  4. Morris, L., Graham, C. F., Gordon, S. Macrophages in haemopoietic and other tissues of the developing mouse detected by the monoclonal antibody F4/80. Development. 112, 517-526 (1991).
  5. Haas, A. The phagosome: compartment with a license to kill. Traffic. 8, 311-330 (2007).
  6. Underhill, D. M., Ozinsky, A. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20, 825-852 (2002).
  7. Castagna, A., Polati, R., Bossi, A. M., Girelli, D. Monocyte/macrophage proteomics: recent findings and biomedical applications. Expert Rev. Proteomics. 9, 201-215 (2012).
  8. Benoit, M., Desnues, B., Mege, J. L. Macrophage polarization in bacterial infections. J. Immunol. 181, 3733-3739 (2008).
  9. Barry, A. O., et al. Impaired stimulation of p38alpha-MAPK/Vps41-HOPS by LPS from pathogenic Coxiella burnetii prevents trafficking to microbicidal phagolysosomes. Cell Host Microbe. 12, 751-763 (2012).
  10. Henry, R. M., Hoppe, A. D., Joshi, N., Swanson, J. A. The uniformity of phagosome maturation in macrophages. J. Cell Biol. 164, 185-194 (2004).
  11. Sundaramurthy, V., et al. Integration of Chemical and RNAi Multiparametric Profiles Identifies Triggers of Intracellular Mycobacterial Killing. Cell Host Microbe. 13, 129-142 (2013).
  12. Boltz-Nitulescu, G., et al. Differentiation of rat bone marrow cells into macrophages under the influence of mouse L929 cell supernatant. J. Leukocyte Biol. 41, 83-91 (1987).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

81

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved