Method Article
Optogenetics has become a powerful tool for use in behavioral neuroscience experiments. This protocol offers a step-by-step guide to the design and set-up of laser systems, and provides a full protocol for carrying out multiple and simultaneous in vivo optogenetic stimulations compatible with most rodent behavioral testing paradigms.
The ability to probe defined neural circuits in awake, freely-moving animals with cell-type specificity, spatial precision, and high temporal resolution has been a long sought tool for neuroscientists in the systems-level search for the neural circuitry governing complex behavioral states. Optogenetics is a cutting-edge tool that is revolutionizing the field of neuroscience and represents one of the first systematic approaches to enable causal testing regarding the relation between neural signaling events and behavior. By combining optical and genetic approaches, neural signaling can be bi-directionally controlled through expression of light-sensitive ion channels (opsins) in mammalian cells. The current protocol describes delivery of specific wavelengths of light to opsin-expressing cells in deep brain structures of awake, freely-moving rodents for neural circuit modulation. Theoretical principles of light transmission as an experimental consideration are discussed in the context of performing in vivo optogenetic stimulation. The protocol details the design and construction of both simple and complex laser configurations and describes tethering strategies to permit simultaneous stimulation of multiple animals for high-throughput behavioral testing.
光遺伝学は、正常および疾患関連行動の状態を駆動する神経回路素子のために、検索にシステムレベルの神経科学に革命をもたらしました。 1は 、機能的に哺乳動物細胞で発現することができ、感光性微生物オプシンという発見は、高い空間的、時間的精度2と神経活動の前例のない制御を得るために光を使用するためのプラットフォームを提供しました。神経活動の操作に伝統的な電気生理学的または薬理学的アプローチとは異なり、光遺伝学は、不均一な集団内および生理学的に関連のタイムスケールでの(識別遺伝的または空間投影に基づいて)特定の細胞型の制御を可能にする。神経光インタフェースのその後の導入は、動物3を振る舞うに光を送達するための実用的なツールを提供した。これは、因果的にテストするために、目を覚まし挙動するのげっ歯類で定義された神経回路のリアルタイムの変調を可能にした神経学的および精神疾患4-6に関連する行動状態のガバナンスにおけるこれらの神経回路の役割。光遺伝学は、従って、動物モデルにおける脳活動および行動または生理学的措置の間の機能的関係を調査することに興味の任意の実験室への導入のための強力なツールを表す。
光遺伝学的実験の成功デザインと完了します( 図1を参照)さまざまなステップおよび考慮事項が含まれます。現在のプロトコルの目標は、目を覚まし挙動するのげっ歯類で光遺伝学的刺激を実行するために必要な理論と実践的な知識、と一緒に、ツールとコンポーネントを持つ個人を提供することです。現在、微生物のオプシンチャネルを活性化するために使用される2つの主要な波長範囲があります。青のスペクトルで(一般的に473 nm)であり、黄緑色のスペクトル(一般的に532または591ナノメートル)。レーザーや発光ダイオード(LED)の両方がdの光源として使用することができる脳組織への光の特定の波長をeliver。 インビボでのげっ歯類の刺激に必要なコアの小さなファイバに結合させる際に、LEDによって放射された非コヒーレント光は、しかしながら、光困難の効果的な伝送を行う。適切なレーザアセンブリの決定することは極めて重要な最初のステップであり、実験室での光遺伝学の使用目的に依存します。シングル予め結合レーザーおよびデュアルレーザーシステム( 図2を参照):現在のプロトコルは、組み立ておよび使用の容易さが異なる2つの基本的な構成について説明します。メーカーによって事前に結合されている単一のレーザーシステムは、基本的にすぐに行く必要ありませんセットアップに少しで到着時にですが、最小限のエンドユーザーによるカスタマイズの欠点を持っている。デュアルレーザーシステムは、同じファイバダウンつの異なる波長の送達を可能にする。異なる波長の阻害/ distincを活性化するために使用することができる、これは、組合せ光遺伝学の出現によりますます重要になる空間的に共局在しているトン細胞型。これは、光電流は、それぞれ7,8、青色光と黄色光によって開始され、終了され、双安定階段関数オプシンで使用するためにも不可欠である。必要に応じてユーザーがビーム経路から( 例えば、外部シャッター、ビームフィルタ、インラインパワーメーター)コンポーネントを追加または削除することができますように、デュアルレーザーシステムもカスタマイズ可能です。光遺伝学は、実験室で使用される継続的なツールであることを行っている場合には、その汎用性のために、デュアルレーザーセットアップを推奨します。レーザの結合は、しかしながら、課題を提示することができるので、迅速、簡単、かつ信頼性のある連結機構は、このプロトコルで提供される。このプロトコルは、光学部品のアセンブリについて詳細に説明し、200μmのコアと0.22の開口数(NA)とステップインデックスマルチモードファイバ用に最適化されたパッチ·コードおよびコンポーネントを利用し、注意してください。異なるコアサイズは、NAはしかし、すべてのコンポーネントは、理想的にはコアの面で一致する必要があり、購入することができますサイズおよびNAは、ファイバの接続点での光損失を回避する。また、ファイバの接続で、光がより大きなコアサイズに小さくから渡すことができます。および/または低NAから高NAファイバに付加的な損失なし。
テザリング戦略は、ハイスループット行動試験のために複数のマウスの同時刺激を可能に提供される。提供されるプロトコルは、行動試験のために、慢性の移植可能な繊維の使用を想定して、急性刺激プロトコルのために修飾することができる。同カニューレの薬剤と同じ場所に、光ファイバの先端を送達するために使用することができるので、急性移植繊維は、薬理学的操作で光遺伝学的刺激を組み合わせるために有利である。それは繊維の繰り返し挿入および除去に伴う組織損傷を減少させ、繊維の一貫した配置するための面で精度を高めるように慢性的に注入した繊維の使用は、しかし、非常に多数の日の行動試験のために推奨される組織照明3。ここで説明テザリングの設定と組み合わせると、動作が複数の日渡って確実に記録することができます。繊維移植後確かに、信頼性の高い光透過率が報告されているか月9慢性刺激および行動試験パラダイムは、理論的には、数日から数週間にわたって行うことができるようになっている。ハードウェアコンポーネントに関する追加の注意事項は、社内で行うことができ、費用対効果的な代替と製品を含む、個々のニーズに合う最高の製品におけるリーダーの選択を可能にするためのプロトコルに追加されました。セットアップと実装時に便利です重要なヒントも提供される。
!注意:このプロトコルは、クラス3Bレーザーの使用を伴い、従うべき適切な訓練や安全ガイドラインが必要になります。レーザーを操作する場合、安全ゴーグル、アライメントの手順は特に高リスクを提示すると、常に着用しなければならない。所定のレーザのための最大限の減衰を提供しますアイウェアを決定するために、レーザープロバイダにお問い合わせください。利用可能な場合は、制度的レーザー安全トレーニングコースに入学。適切な安全眼鏡やトレーニングなしでレーザーを使用しないでください。
1.レーザ装置セットアップ
適切な場合には、第1のステップは、それぞれ、シングルまたはデュアルレーザシステムを区別するために(A)または(B)として指定される。
2.レーザーカップリング(非接触スタイルカップ)
このセクションでは、デュアルレーザーセットアップ( 図2B)にも関する。外側の黄色のレーザー経路を位置合わせする前に、内側の青色レーザーパスを合わせます。
!注意:目の安全を確保するために、低光電力結合(〜1 MW)を使用してください。レーザーおよび光強度を測定し、安全であるとみなされるまで電源への安全ゴーグルを着用する。
3. インビボ光遺伝学的刺激
動物の使用を含むすべての手続きは、地域および国のガイドラインに沿って実施し、対応する施設内動物管理使用委員会によって承認されていることを確認。
vivo刺激の考慮事項4.ポスト
このセクションは、完全プロトであることを意図されていないCOLしかし、インビボ光遺伝学的刺激後の考慮すべき追加の手順については、ガイダンスとして提供されています。
in vivoでの光遺伝学的刺激を用いて得られた行動の結果は、動物モデルを使用し、標的とされる神経回路に完全に依存しており、変調パラメータ。チロシンヒドロキシラーゼの現在例証目的のために、腹側被蓋領域におけるドーパミンニューロン、またはVTA、::のためのCreマウスは、安定した階段関数オプシン(SSFO)8で形質導入された、またはコントロールウイルス(のeYFP)、および繊維インプラントは、慢性的であった。注入された。 THの使用::のCreトランスジェニックマウスは、オプシンの発現がVTAにおけるTH +細胞(ドーパミン)に制限されます。 図7に複数のマウスの同時刺激のための現在のレーザのセットアップを使用して得られた代表的な行動の結果を示す。ここで、マウスは、テザーであり( 図4Cのように3匹のマウス/レーザー)別個のレーザを用い、同時に刺激され、運動行動を1時間記録した。 VTAにおけるドーパミンニューロンの反復刺激は、以下のような結果に刺激の期間を通じて持続した非常に活発な表現型。運動行動に変化のeYFPマウスにおいて見られなかった( ビデオ1を参照)。行動試験の後に、免疫組織化学を目視で確認したVTAドーパミンニューロンおよび繊維配置( 図7参照)の正確なウイルスの標的化を確認するために行った。
in vivoでの光遺伝学的刺激のための、図1。実験の手順。設計およびin vivo光遺伝学的刺激に実行する際に関係する4つの一般的なステップがあります。このプロトコルは、具体的に行動する齧歯類におけるレーザ光源からの脳深部構造への光の送達に関連する手順について詳細に説明し、1)レーザーシステムアセンブリと光結合を含む。 C 2)テザリング戦略ハイスループット行動試験のための光源に複数の動物をonnecting、3)光配信のためのターゲティング戦略を確認するためのガイドラインを提供 - データ解釈のために不可欠であるステップを。注:このプロトコルはテザリングの目的のために慢性の移植可能な繊維に排他的ではないが、それは推奨され、行動試験で光遺伝学的刺激を組み合わせた場合に想定。ウン&Arenkiel、2012年18およびスパルタらの両方を参照してください。2012年9慢性光ファイバの内製と移植のために。実線=このプロトコルでカバーステップ。
インビボでの光遺伝学的刺激に用い、図2レーザーシステム(A) のin vivo刺激のための単一のレーザシステム。このレーザーがphある ysically製造業者によって予め結合ほとんどのエンドユーザのセットアップを必要とする。(B)デュアルレーザシステム。二つのレーザは非接触様式カプラにそれぞれのビーム経路を操縦するように作用するミラーを使用することにより、単一のファイバに結合されている。これは、最も汎用性の高いセットアップ必要な光学構成要素を削除または追加することができるようであるが、効率的なレーザの結合の点で課題の多くを示す。(C)デュアルレーザシステムの概略図を(B)に示されるレーザおよびミラーの配置を示す対応するレーザ光のビーム経路(矢印)で示さ。ここで、ダイクロイックミラー "D"を介して連結器「C」へと取り付けられたカプラパッチコードに黄色の波長を透過する光の青の波長を偏向するために使用される。 B =青色レーザー。 C =非接触様式カプラ。 D =ダイクロイックミラーと、 FW =フィルタホイール。 M =ミラー。 Yは黄色のレーザーを=。= "_空白"を取得>この図の拡大版をご覧になるにはこちらをクリックしてください。
非物理的なカップリングプロトコルで使用される図3(A)ケーブルテスター下:。直接パッチコードに接続されたケーブルテスター。インサートは、ケーブルにテスターの接続点を示している(B)パッチコードは、プロトコルを通じて言及アウターからインナーまで:フラットクリーブ(FC)端部に取り付けられた白いジルコニア割スリーブ付きマルチモードファイバスプリッタ、黒ジャケット動物パッチコードを、 (また、「カプラーコード」と呼ばれる)の厚さのジャケット付きパッチコード。厚いジャケット付きパッチコードは、特別な保護のためのポリ塩化ビニル(PVC)チューブで被覆されている。これらのケーブルは、業界標準の色コードは、異なる種類の繊維、オレンジ=マルチモードファイバとの間で区別するために使用される。動物のパッチコードですシンナー行動試験中に、動物の移動のための柔軟性を可能にするためにジャケット。そのダストキャップは、ケーブルが使用されていないとき、FC / PCが終了した上に置かれることに注意してください。 この図の拡大版をご覧になるにはこちらをクリックしてください。
(A)単一の動物、(B)2匹の動物のin vivo光遺伝学的刺激のための図4テザリング戦略。 。(C)3または4匹の動物の可能な構成が上記に示したものに限定されるものではない-複数の構成は、市販またはカスタムオーダーにより利用可能ですアダプタ、ファイバスプリッタ、及び分岐パッチコードのユニークな組み合わせによって可能である。注:パッチコードとファイバスプリッタ両端FC / PCコネクタを含む(一端のみが示されている)。ww.jove.com/files/ftp_upload/51483/51483fig4large.jpg「ターゲット= "_空白">この図の拡大版をご覧になるにはこちらをクリックしてください。
図5。スプリットスリーブを使用して、移植可能な光ファイバへのパッチコードの正しいと間違った(赤のx)を接続。 (左パネル)、スプリットスリーブジルコニアAは、埋め込 み型光ファイバ(ここでは図示動物に貼付されていない)のフェルールにパッチコードを接続するために使用される。矢印は、パッチコードや植込み型光ファイバとの接続点を指している。接続スリーブの分割により可視化されるようにギャップが、パッチコード及び植込み型光ファイバとの間に存在する(右パネル)と比較してください。不適切な接続(右下)で発生する可能性の光漏れに注意してください。 U上のボトムインサートPPER左側のパネルには、使用される個々の構成要素を示す。ドリス式植込み型光ファイバーカニューラ、白ジルコニアスプリットスリーブ、黒ジャケット、動物のパッチコードのフラットクリーブ(FC)終了( 図3Bに示されている完全なパッチコード):トップからの挿入の下へ。すべてのパネルでは、接続スリーブは、パッチコードのFC端部と同一平面ではないことに注意してください。ままに〜0.5cmのオーバーハング動物に取り付けられた移植可能な光ファイバに接続するための。 この図の拡大版をご覧になるにはこちらをクリックしてください。
図6.サイド(左)と前頭パッチコードに接続されている移植された光ファイバとマウスの(右)ビュー。パッチコードtの適切な接続を視覚化するために接続スリーブ上のスプリットを使用してください移植された光ファイバのフェルールoを接続ポイントは、赤い破線のボックスで強調表示し、また、上のインサートに描かれている。 この図の拡大版をご覧になるにはこちらをクリックしてください。
7.代表的な結果を図。 (左) の生体内光遺伝学的刺激の行動読み出し。記載のレーザセットアップとテザリングプロトコルを使用して得ることができる動作の例。自発運動は、チロシンヒドロキシラーゼ(TH)で腹側被蓋領域(VTA)の光遺伝学的刺激中に記録された:: Creマウス(N = 7から8 /グループ)のいずれか階段関数オプシン(AAV5-DIO-SSFO-のeYFPで形質導入)またはコントロールウイルス(AAV5-DIO-のeYFP)VTAで。 3匹のマウスの群は、同時に1につながれた図4Cに示されており、447または473 nmの光の5秒のパルスで刺激としてレーザーは一回15分毎に配信。光遺伝学的刺激は運動活性を増加したことにより、双方向反復測定ANOVAは、重要なグループ×時間の相互作用(F 3,39 = 15.27、P <0.0001)と時間の有意な主効果(F 3,39 = 4.67、P = 0.007)を明らかにしたSSFOマウスにおいてのみ(= 0からt相対ボンフェローニ事後P <0.0001、 - 15時間ビンを)のeYFPマウスと比較して運動活性の全体的な増加(グループの主要な効果が得られる:F 1,39 = 10.69、P = 0.0061;ボンフェローニ事後P 2で、。エラーバーは平均の標準誤差を表す。のeYFPSSFO 対 :** P <0.01; *** P <0.001;時間効果:ウイルスおよび光ファイバの配置の#### P <0.0001(右)組織学的確認。ライカTCS SP5走査型レーザ顕微鏡で取得した共焦点蛍光画像を繊維配置(点線)、およびインビボでの光遺伝学的刺激後のマウスの腹側被蓋領域におけるウイルス媒介発現(緑色)を可視化した。ドーパミンニューロン(TH +)が青色で見られている。 この図の拡大版をご覧になるにはこちらをクリックしてください。
生体光遺伝学的刺激で ビデオ1:Creマウス:: THでSSFOを使用してVTAの刺激中多動このビデオを見るにはこちらをクリックしてください。
表1.光放射照度は、一般的に使用されるオプシンを活性化するのに必要な。 | ||||
オプシンバリアント | λ | パワー密度(個/ mm 2) | プロパティ | |
オン/オフ速度論 | ||||
光励起:速効性のchannelrhodopsins | ||||
ChR2を2 | 470 | 1 - 5mWの | 1.21 / 12ミリ秒 | 40ヘルツまでの火災 |
ケタ19 | 490 | 5ミリワット | 0.86 / 8.5ミリ秒 | 200ヘルツまでの火災 |
CHIEF 20 | 450 | 1.65 mWの | 1.62 / 12ミリ秒 | ChR2をの非脱感作フォーム |
C1V 18 | 540から630 | 8 MW(540nmの) | 54で5/34秒0nm | 赤方偏移 |
3.2 MW(630nmの) | 630nmのの67ミリ秒(上) | |||
光励起:遅効チャネルロドプシン | ||||
安定したステップ関数オプシン(SFO)8 | 590分の470 | 8μW(470nmの) | 20ミリ秒/ 29分 | 新しいSFOの変異体;長く開いた状態。 470nmのことでオープンした、590 nmのにより閉鎖 |
光阻害 | ||||
eNpHR3.0 21 | 560から630 | 3から5ミリワット | 2.5ミリ秒/ <10ミリ秒 | 一定の光で30分間22持続阻害* |
ArchT3.0 11、23 | 520から560 | 1から5ミリワット | 2 / <10ミリ秒 | eNpHR3.0 <より大きい光電流とのより敏感/ TD> |
この表はあくまで目安として提供されている。神経変調のために必要な特定の光放射照度は、独立して確認する必要があります。 | ||||
実験的検証はオプシン、ターゲット戦略、および光刺激パラメータは、意図的に5における神経発火を調整することを確認することが重要です。 | ||||
出力密度(mWの本/ mm 2)は 、脳組織の所定の領域に照射される光のパワーを参照し、ファイバ先端から出射される光パワーを意味するものではない。 | ||||
*常に特に長時間の光刺激で、可能な限り低い光強度を使用しています。 |
表1.光放射照度は、一般的に使用されるオプシンを活性化するのに必要な。
略語
AAV =アデノ随伴ウイルス
DPSS =ダイオード励起固体
のeYFP =強化された黄色蛍光タンパク質
FC / PC =フラットクリーブ/物理的な接触
GFP =緑色の蛍光タンパク質
PBS =リン酸緩衝生理食塩水
PVC =ポリ塩化ビニル
MW =ミリワット
NAは開口数=
SSFO =安定した階段関数オプシン
TH =チロシンヒドロキシラーゼ
TTL =トランジスタ - トランジスタロジック
V =電圧
VTA =腹側被蓋領域
現在記載されたレーザセットアップとテザリング戦略は齧歯類行動試験の広い範囲と互換性があります。確かに、行動試験の様々な少数を示すために、次の、または付随する、in vivoでの感情、行動のタスクを含む光遺伝学的刺激、行動の調節、学習および記憶パラダイム、睡眠、覚醒、そして食欲のタスクを使用されている((ニー·チョン) らを参照してください。包括的な見直しのための6)。光遺伝学は、伝統的な行動試験は、複数の日の研究で行われている方法は、今5「オフ」対「オン」光の明確なエポックの間に、被験者内、動作が比較される単一のセッションに凝縮することができます変更されました。注目すべきは、出入り口を含む行動の装置は、閉じた区画または他の障害物が係留繊維の通過に適応するように修正されなければならないことがある。
記載されテザリング戦略許可のSi単一のレーザから複数のマウスのmultaneous刺激。ハイスループット光遺伝学的行動試験は、従って、複数のレーザ及び試験装置を使用して達成することができる。同時に刺激することができる動物の数は、しかしながら、各ファイバ先端に達成できる最大の光パワーによって制限される。ファイバ先端での最大出力は、レーザの1)開始パワーに依存する。 2)カップリング効率及び3)ビーム分割数。 200μmのコア、0.22 NAファイバパッチコードを使用する場合〜80% の結合効率を有すると( 図4Cに示されるように)4、ビーム分割、ファイバ先端の平均電力最大100mWの青色レーザ5~10ミリワットの間の範囲であり得る(ロータリージョイントから伝送損失が<15%であることが期待NB)。オプシンは、光に対する感受性が異なるので、光出力密度(mWのように、ファイバ先端に光出力を測定することは、オプシンの活性化のために十分な光パワーを決定するために必須である活性化のために必要な11個/ mm 2)。例えば、安定した階段関数オプシン(SSFO)は、光子アキュムレータとして作用するので、活性化のための非常に小さな光パワー密度(<8μW/ mm 2以上) を必要とする8。活動電位を誘発するための光の1ミリワット/ mm 2で最小を必要とする伝統的なチャネルロドプシン(ChR2を)とこれを比較2。 表1は 、現在最も一般的なオプシンをアクティブにするために必要な知られている最低限の光放射照度のクイックリファレンスとして提供されている使用しています。最後に、人はその光散乱を考慮し、より多くの光パワーをより深く脳構造3のために必要とされるように、脳組織を通って移動するように吸収しなければならない。便利なオンラインリソースがで入手できますhttp://www.stanford.edu/group/dlab/cgi-bin/graph/chart.phpに取ることによって脳組織を通じて様々な深さでの光強度を計算し、そのファイバ先端にファイバコアサイズ、開口数、使用する光の波長、および出発光パワーを占めている。これらの計算の基礎となる理論的な原則の優れた概要については、Foutz らを参照してください。 (2012)12。実験設計にこれらの原理および計算を適用する方法の例としては、(2007年)3。Aravanisらに実証さタイら。(2012)13される。実験の開始前に、これらの計算を実行することはオプシンの活性化のための適切な光放射照度を確保することが重要である。これらの考察を考慮すると、十分な出力を確保するために高出力レーザを購入することが有利である。 100-200ミリワットの間の電力出力を有するレーザは、小さなコア繊維、複数の繊維を分割、結合効率の悪さを補償するのに一般に十分であり、送信は7を失う。高出力レーザーを使用する場合は、しかし、注意は、神経の損傷または熱と光会合を避けるように注意しなければならない長期化および/ または高出力光照明7で発生する可能性があるDアーティファクト。 in vivo実験のための安全な範囲は、75ミリワット/ mmの2までである。14
考慮すべき多くの要因があるとして購入するレーザーの種類を決定することは複雑な問題であることができる。例えば、ダイレクトダイオードレーザは、ダイオード励起固体(DPSS)レーザが何よりも安定的で反復パルス出力を提供し、ラボ環境で時間をかけて、より信頼性が高い。しかし、場合によっては、ダイレクトダイオードレーザは、指令電圧が、レーザの制御電子回路によってダイオードに送られる一定のバイアス電流を0 Vである場合であっても、より低い光パワーを放出する、〜0.1mWでよい。この「自発的な」放出は、同じレーザからレーザ放射の場合よりも広いスペクトルを持っているので、特にレーザーとカプラとの間の狭いバンドパス(または「クリーンアップ」)フィルタ(部品リストを参照)をインストールすることによって低減することができる。このフィルタは、意志レイジング時〜50%の電力出力を低減し、それに応じ、より高いパワーのレーザーを購入する。それは黄色のDPSSレーザーは非常に敏感であり、動作が不安定になることができ、迅速にパルス発生器によって変調された場合には、寿命が減少していることに留意すべきである。黄色のレーザーパワーの調整は、TTL +モードでレーザーを動作させながら、ビーム経路(1.7節 )に配置された外部の濃度フィルタホイールを介して行われるべきである。また、緑の532 nmのDPSSレーザーを購入することはhalorhodopsinsとarchaerhodopsins両方を活性化することができる費用対効果の高い代替手段です。
ファイバの開口数(NA)は、レーザアセンブリのセットアップのための繊維成分を設計し、購入する際に考慮することが重要である。光ファイバのNAは、光ファイバの先端に受け入れ、放出することができる光の角度を決定する。高NAファイバは、低NAファイバに交配された場合、重大な損失がその界面で発生するので、それは一貫してのWiすることが重要ですシングルセットアップ内番目の繊維NA(またはNAは、光路に沿って上昇することを確実にするため)。脳組織は高度に散乱し、レーザ光源からの結合された光が「アンダーフィル」高NA繊維になる傾向があるので、照射されているので、脳組織の体積に対する繊維NAの効果は、それほど重要ではない。 0.22および0.37のNAを有するが、光ファイバは、一般的に使用される。同様に、より小さなコアファイバの大きなコアからの結合はまた、常に動物のインプラントにレーザ光源から進行したときに増加または同等のコア径を使用してください、大きな損失になります。一般的なノートでは、ファイバ端部は、常に使用しない塵埃及び粒子の蓄積を防止するためにキャップされたときにすべきである。それは、最大の光出力を確保するために、そして毎日の実験を開始する前に、「ダミーインプラント 'を介して光出力をテストするために(70%イソプロピルアルコールがうまく動作します)定期的にクリーンなファイバ端部とコネクタに良いアイデアです。
">行動試験中は、ステップは、ウイルス感染、外来タンパク質の発現、可視光、および動物の行動上の可能な組織加熱効果及びアーチファクトの影響を制御するために取られることが不可欠であるため、適切な対照群の動物からなるべき同一の光刺激パラメータを受信する対照ウイルス( 例えば、GFP、のeYFP、mCherryを)で形質導入実験検証解析のために使用される行動データなどの重要な最終ステップは、関心領域内の適切なオプシンおよび光ファイバ配置に完全に依存している具体的には、動物に全く免疫組織化学的信号が検出されない場合、又は信号又は繊維の配置は、関心領域内にない場合、その動物のためのその後の行動データは、実験から除去されるべきである。さらに、それはの光出力をテストすることが不可欠であるファイバ先端外科的移植前とオプシンの活性化のために十分な光パワーを確保するために、もう一度、死後の両方。アニマで重度の光損失が実験(> 30%)9の後にファイバを通って発生したLSは、その動物のためのデータは、除去のために考慮されるべきである。除去のための基準は先験的に確立されるべきである。最後に、1は、標的とされる脳の構造と神経細胞のサブタイプに依存し、神経発火を調節するのに必要なパルス周波数を、考慮しなければなりません。公開された光遺伝学的光刺激パラメータは、しかしながら、神経発火を調節する能力は、独立して、インビボまたは脳切片電気生理学的記録によって確認されるべきであり、複数のニューロンのサブタイプが存在する。一つは、レーザーの使用、レーザー設定アップの変形例熟達になるように、異なる波長の組み合わせは、単一の動物の複数の繊維に繋留またはコンビナトリアル光遺伝学8に対して同じ光ファイバを下に送達することができる。多波長刺激は、赤方偏移の急速な発展与えますます重要になるEDのchannelrhodopsins 8、ブルーシフト過分極オプシン15のエンジニアリング、双安定階段関数オプシン8,16,17、および個別の活性化スペクトル11とオプシンの一般的な拡大リストを使用。光遺伝学的ツールボックスのこの拡張は、複雑な行動の状態を支配する中で自分の役割を決定するための脳領域内および間の両方で、複数の神経サブタイプの前例のない制御を可能にします。
The authors have no conflicts of interest to report.
These studies were funded by grants received from the NIH (MH082876, DA023988).
Name | Company | Catalog Number | Comments |
1. Laser Set-up | |||
100 mW 473nm or 488nm Diode Laser System , <2% Stability (quantity: 1) | Omicron | Luxx/Phoxx 473/488-100 | Optional accessory includes a remote control box with key switch and LED Display |
100 mW 594nm DPSS laser (quantity: 1) | Colbolt | 0594-04-01-0100-300 | 04-01 series yellow laser; sensitive to back reflection from fibers |
200 mW 532 nm DPSS laser; 5% power stability (quantity: 1) | Shanghai Lasers | GL532T3-200 | Cost-effective alternative to yellow DPSS laser for activation of halorhodopsins and archaerhodopsins |
Non-contact style laser to multimode fiber coupler (quantity: 1) | OZ Optics | HPUC-23-400/700-M-20AC-11 | For use with dual laser set-up; Specs: 33 mm OD for 400 - 700 nm; FC receptacle, f = 20 mm lens with post mount laser head adapter #11 |
Aluminum breadboard, 12" x 18" x 1/2", 1/4"-20 Threaded (quantity: 1) | Thorlabs | MB1213 | For dual laser system |
Aluminum breadboard, 10" x 12" x 1/2". 1/4"-20 Threaded (quantity: 1) | Thorlabs | MB1012 | For single laser system |
Aluminum breadboard, 4" x 6" x 1/2", 1/4"-20 Threaded (quantity: 2) | Thorlabs | MB4 | For blue laser; dual laser system |
Compact variable height clamp, 1/4"-20 Tapped (quantity: 4) | Thorlabs | CL3 | |
3/4" stainless post (quantity: 1) | Thorlabs | TR075 | |
1" stainless post (quantity: 4) | Thorlabs | TR1 | |
Post holder with spring-loaded hex-locking thumbscrew (quantity: 2) | Thorlabs | PH1 | |
Pedestal Base Adapter (quantity: 3) | Thorlabs | BE1 | |
Small Clamping Fork (quantity: 3) | Thorlabs | CF1253 | |
Kinematic mount for 1" optics with visible laser quality mirror (quantity: 3) | Thorlabs | KM100-E02 | |
Neutral filter density wheel (quantity: 1) | Thorlabs | NDC-50C-2M | |
1" Longpass dichroic mirror 50% (quantity: 1) | Thorlabs | DMLP505 | |
Kinematic mount for 1" optics (quantity: 1) | Thorlabs | KM100 | For dichroic mirror |
20-piece hex wrench kit with stand (quantity: 1) | Thorlabs | TC2 | |
1/4"-20 cap screw and hardware kit (quantity: 1) | Thorlabs | HW-KIT2 | |
Mounting base 1" x 2.3" x 3/8" (quantity: 1) | Thorlabs | BA1S | |
FC/PC to FC/PC L-Bracket mating sleeve (quantity: 2) | Thorlabs | ADAFCB1 | Dual FC/PC L-bracket also available |
Breadboard lifting handles (quantity: 3) | Thorlabs | BBH1 | |
Ø1" Bandpass Filter, CWL = 450 ± 2 nm, FWHM = 10 ± 2 nm (quantity: 1) | Thorlabs | FB450-10 | For use with diode lasers that spontaneously emit |
2. Laser Coupling | |||
! Laser protective eyewear (quantity: 1 for every user at each wavelength) | Various | ! Consult with laser provider to ensure proper selection of eyewear that will provide maximal light attenuation for the purchased laser | |
Fiber optic cable tester (quantity: 1) | Eclipse | 902-186N | |
One-step fiber connector cleaner (quantity: 1) | Thorlabs | FBC1 | |
Coupler patch cord (0.75 meter) (quantity: 1) | Thorlabs | 0.75 m 200 μm core, 0.22 NA, FC/PC connectors multimode fibers; for dual laser system | |
Coupler patch cord (0.5 meter) (quantity: 1) | Thorlabs | 0.5 m 200 μm core, 0.22 NA, FC/PC connectors, multimode; for single laser system | |
Doric mini cube (quantity: 2) | DORIC | DMC_1x2_FC-2FC | |
Compact power and energy meter console (quantity: 1) | Thorlabs | PM100D | Digital 4" LCD |
C-series slim power sensor 5 - 500 mW (quantity: 1) | Thorlabs | S130C | Multiple detectors types are available; check with vendor |
3. In vivo Optogenetic Stimulation | |||
Multimode fiber splitters (quantity: 2) | FONT Canada | Large core fiber optic 1 x 2 splitter, 50/50 ratio, FC connectors, ruggedized. Length, core size and numerical aperture can be specified when ordering; cost-effective smaller core sizes available | |
Arbitrary waveform function generator (2 channel) (quantity: 1) | Rigol | DG1022 | Can control up to 2 lasers at once |
Fiber optic rotary joint (commutator) (quantity: 6 - 8) | DORIC* | FRJ_1X1_FC-FC | *Also available through Thorlabs and Prizmatix |
Animal patch cords (Custom Mono Fiberoptic Cannula with 10mm ferrules, FC/PC connector) (quantity: 8) | DORIC | MFP_200/240/900-0.22_2m_FC-MF2.5 | Length, core size and numerical aperture can be specified when ordering; alternatively, these can be made custom made in-house (see Sparta et al. 2012)9. |
PFP ceramic split sleeve, 2.5mm ID, 11.40mm length (25/pkg) (quantity: 1) | Precision fiber Products | SM-CS1140S1 | Used for attaching implanted fiber optic on animal to a light-delivering fiber patch cord with flat cleeve (FC) end |
Clear dust caps for Ø2.5 mm ferrules (25/pkg) (quantity: 1) | Thorlabs | CAPF | |
Metal cap for FC/PC and FC/APC mating sleeves (quantity: 1) | Thorlabs | CAPF1 | |
Thick-jacketed patch cords (custom order) (quantity: 4) | Thorlabs | 200 μm core, 0.22 NA, FC/PC connectors multimode fibers; length, core size, and numerical aperture can be specified when ordering |
このJoVE論文のテキスト又は図を再利用するための許可を申請します
許可を申請This article has been published
Video Coming Soon
Copyright © 2023 MyJoVE Corporation. All rights reserved