JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

The authors report on conductivity studies carried out on lithium solvated electron solutions (LiSES) prepared using 1,3,5-triphenylbenzene (TPB) and corannulene as electron receptors.

要約

著者らは、リチウム溶媒和電子溶液(LiSES)で行っ伝導研究について報告する電子受容体として、多環芳香族炭化水素(PAH)の2つのタイプ、すなわち、1,3,5-トリフェニル及びコランニュレンを用いて調製。固体のPAHは、第一の溶液を形成するために、テトラヒドロフラン(THF)に溶解しました。金属リチウムは、次に青または緑がかった青色の溶液、溶媒和電子の存在を示す色のいずれかを生成するために、これらのPAH / THF溶液に溶解しました。リーで表される1,3,5-トリフェニルベンゼン系LiSESで行わ周囲温度における導電率の測定は、TPB(THF)のxは 24.7(X = 1、2、3、4)、リチウムの増加に伴って導電率の増加を示しました。 X = 1から2にPAH比しかし、導電性が徐々にさらに割合を増加させる時に減少しました。実際、李の導電率は、x = 4のためのTPB(THF)24.7を X X用よりもさらに低くなっています、247(x = 1、2、3、4、5)、金属ビフェニルと類似の挙動及びナフタレンを示し、負の勾配を有する線形関係を示したコー(THF)にxはベースLiSES。

概要

リチウム溶媒和電子溶液(LiSES)は、潜在的に燃料補給リチウム電池1-7における液体アノードとして利用することができ、このようなビフェニルおよびナフタレンなどの単純な二環多環芳香族炭化水素(PAH)を用いて調製しました。 LiSESでは、これらの単純なPAH分子が溶解した金属リチウムから溶媒和電子のための電子受容体としての役割を果たしました。

これらの二環系から進んで、著者はそれ以来、シクロペンタ-2,4-ジエノン誘導体8のグループで開始し、より複雑なのPAHを用いて調製されるLiSES上の導電率測定の研究を行ってきました。これらのPAHは、その芳香環に組み込まれた置換基を持つ大規模のPAH(> 2つのベンゼン環)とのPAHが含まれます。二つ以上の環を有する大きいPAH分子をより高いエネルギー密度を有するLiSESもたらすビフェニルまたはナフタレンのいずれよりもPAH分子あたりのリチウム原子を収容することが期待されます。 introducの目的PAH類に置換基をると、PAHがより容易に電子を受け入れ、LiSESでポリアニオンとしてより安定になるようにすることです。

高いエネルギー密度を持つLiSESを開発するための継続的な努力の一環として、本稿ではTPBが若干修正された文献10によって合成され、文献の手順9と同様に1,3,5-トリフェニルベンゼン製のコランニュレンから調製LiSESの特性について報告します。 1,3,5-トリフェニルは、 図1に示すように、(1)、同じ環の位置3及び5の2つの追加のフェニル環を有するビフェニル誘導体として分類することができます。この分子は、4つのベンゼン環を有しているので、それはよりビフェニルために以下である分子当たりのLiの4個の原子を取り込む必要があり、ナフタレン(0.5 M溶液中のPAH当たりのLiの最大2.5モル当量)(<分子当たりのリチウムの2.5モル当量) 。

コランニュレンは、 図1に示すように、PAHは、椀状に配置された5-リング(2)。 Zabula 11コランニュレンの二つの安定tetraanionsの間に挟まれた5 Li +イオンを有する溶液を形成するコランニュレン/テトラヒドロフラン(THF)の溶液中に金属リチウムを溶解することの実現可能性を実証しました。

figure-introduction-1289
図1:1,3,5-トリフェニルは、同じ環の位置3及び5の2つの追加のフェニル環とビフェニル誘導体として分類される(1)及びコランニュレン(2)1,3,5-トリフェニルの分子構造 。コランニュレンは椀状に配置され、その5ベンゼン環と5員環PAHである。 この図の拡大版をご覧になるにはこちらをクリックしてください。

このように、1,3,5-トリフェニルベンゼンとコランニュレン両方は、高エネルギーの潜在的な候補であります密度LiSES。

プロトコル

1,3,5-トリフェニル1.準備手順(1)

  1. マグネチックスターラー、還流冷却器、窒素注入口、バブラー、滴下ロート及び温度計を備えた丸底三口250mlフラスコにアセトフェノンの混合物(4.0 gであり、33.3ミリモル)と無水エタノール100mlを置き。滴下漏斗を用いて窒素下で0℃で一度に混合物に四塩化ケイ素(11.9 gを8.0 mlの70.2ミリモル、2.1当量)を加えます。
  2. 10分間塩化水素ガスの発生を観察します。その後20時間40℃で反応混合物を攪拌します。
  3. 23℃に反応混合物を冷却し、氷と混合した水200gに注ぐ(1:1質量比)。
  4. 抽出用ロートを使用して、ジクロロメタン(2×100ml)で得られた混合物を抽出します。
  5. 飽和NaCl溶液(100ミリリットル)、および無水MgSO 4のドライ15以上のグラムで一度合わせた抽出物を洗浄します。オフ液体部分を濾過し、次に私達に集中ロータリーエバポレーターる。
  6. 1,3,5-トリフェニルの(63%収率2.2)gを得(エタノールの最小量で溶解部分の溶媒を蒸発させ、一晩6℃に維持し、そして急速濾過し)、エタノールからの再結晶化を介して生成物を精製(1)を淡黄色結晶として得ました。
    :1 H-NMR(400 MHzの、CDCl 3中):δ= 7.41(メートル、3H)、7.50(メートル、6H)、7.72(D、6H、J = 7.33Hz)、7.80(S、3H)13 C-NMR(400 MHzの、CDCl 3中):δ= 125.21、127.39、127.57、128.88、141.18、142.38。

1,3,5-トリフェニルベンゼンを用いて調製2. LiSES

  1. 1,3,5-トリフェニルベンゼンベースLiSESの調製
    注:本論文で用いる1,3,5-トリフェニルベンゼンを上記の手順に従って合成しました。李が付されている1,3,5-トリフェニルベンゼンベースのLiSESは、xは、Li表しTPB(THF)24.7 X:PAHモル比とTPBは、1,3,5-トリフェニルを表します。リーを準備X TPB(THF)、次の手順を介して、周囲温度でアルゴン充填グローブボックスの内側24.7。
    1. 李の目標モル組成は、TPB(THF)は、x = 1、2、3、および4. 41.6ミリグラム、83.3ミリグラムのための24.7、124.9xは達成するために、別々にグローブボックスの内側に金属製のLi、THFとTPBの明確に定義された量を測定しますMG、それぞれx = 1、2、3、4のLi 166.6ミリグラム。
    2. 調製する4つLiSESサンプルのそれぞれについて、それぞれのボトルのためのTPBの無色溶液12mlを(THF)24.7を形成する4つの別々のガラスびんの内部THF 12 ml中TPB 1.84gのを溶かします。すべてのソリューションに0.5 M 1,3,5-トリフェニルベンゼンを使用してください。
    3. Liは4ボトルに箔とパラフィルムでボトルをシール秤量メタリックを追加します。
    4. Li金属の完全な溶解を確実にするために、ガラスでコーティングされたマグネチックスターラーを用いて一晩、各ボトル中の混合物を撹拌しました。
  2. 導電率測定
    1. キャリー4電極法に基づく標準的な導電率セルのプローブを使用して、すべての導電率の測定。メートルにセルプローブを接続します。プローブは、同時に溶液の温度を測定し、導電率及び温度の両方の測定値を表示するための二次的機能を有しています。
    2. 測定の前に、グローブボックスの外側導電率プローブの製造元によって提供される標準的な0.01 M KCl水溶液の50ミリリットルを使用してメーターを調整します。
    3. 1,3,5-トリフェニルベンゼン系LiSESのすべての導電率の測定を行って、LiがTPB(THF)グローブボックス内部で、X = 1、2、3、4 24.7を xは
    4. これらLiSESのそれぞれについて、短いガラスシリンダーに試料を注ぐし、溶液中にプローブを浸します。周囲温度に各サンプルリターンまで1〜2時間かけて導電率の測定値を記録。周囲温度に戻すために、各サンプルに要する時間が〜1〜2時間です。プローブワット病気の導電率測定の全期間のためのサンプル中に浸漬したままです。

3.コランニュレン

  1. コランニュレンベースLiSESの調製
    注:この論文で用いコランニュレンは、多段階の文献の手順を用いて、NTU、物理的および数理科学の学校で合成した9コランニュレンベースLiSESは李が付されているうわっ(THF)をX Xは、Li意味247:PAHモルを比とコーはコランニュレンを示しています。 Liは、以下のステップを経て、周囲温度でアルゴン充填グローブボックスの内側コリント(THF)247 xは準備します。
    1. リーの目標モル組成を達成するために、グローブボックス内部で別途金属リチウム、THF及びコーの明確に定義された量を測定するコー(THFに)X = 1、2、3、4および5を使用するための247 4.2ミリグラム、8.3ミリグラム、xは 12.5ミリグラム、16.6ミリグラムとそれぞれx = 1、2、3、4および5のためにLiを20.8ミリグラム。
    2. ネックスtは、5 LiSESサンプル(X = 1、2、3、4および5)を調製するごとに、コリントの無色溶液12mlのを形成するために5つの別々のガラスびんの内部THF 12 ml中コーを0.15gを溶解します各ボトル内(THF)247。 )0.05 Mのコランニュレン濃度を使用してください。
    3. 次に、Liはコリント(THF)の5ボトルに箔計量した金属247を追加し、パラフィルムでボトルを密封します。
    4. 金属リチウムの完全な溶解を確実にするために、ガラスでコーティングされたマグネチックスターラーを用いて一晩、各ボトル中の混合物を撹拌しました。
  2. 導電率測定
    1. 温度測定対伝導率については、Liがコリント(THF)は、x = 1、2、3、4、個別に、グローブボックスから5のための247を含むX 5ボトルのそれぞれを削除し、パラフィルムの追加の層でそれをラップし、それを浸しますドライアイスで満たされた絶縁された発泡スチロール容器内。
      注:LiSESサンプルは続きに来ませんでした瓶を密封したので、グローブボックスの外にしながら、水分や酸素のいずれかを持って行動します。
    2. 伝導率測定用のグローブボックスの中に戻って転送される前に、約30分間のドライアイスに浸漬各ボトルを保持することにより約10℃までの各ボトルを冷却します。
    3. グローブボックスのアンティチャンバをパージするごとに、少なくとも5回は、結露の水の痕跡が戻ってグローブボックスにボトルに同行しないことを確実にするために、サンプルを冷却しました。
    4. 温度測定に対して導電性がナフタレン系LiSESサンプル1のために収集された方法と同様に、リチウムの導電率を測定するものにかけコリ(THF)247(x = 1、2、3、4、5)×各サンプルまでの2時間は、周囲温度に戻りました。プローブは、導電率測定の全期間については、サンプル中に浸漬されたままになります。

結果

図2に示すように、様々なリチウムの量とTHFとの1,3,5-トリフェニルベンゼンの混合物との間の反応は、緑がかった青や深い青色のソリューションを提供します。光の色がLiSESの特定のサンプルは、溶媒和電子の濃度が低いことを示しています。 0.5 M THF溶液( 表1)で1〜2 PAH比:1,3,5-トリフェニルベンゼンは、Liの増加と導電率の増加を示しています。しかしながら、導...

ディスカッション

1,3,5-トリフェニルベンゼンベースLiSESの場合は、光色のサンプルは、それが溶媒和電子の濃度が低いことを示しています。 LiがTPB(THF)24.7を (X = 1、2、3、4の場合)ビフェニルおよびナフタレン1から作らLiSESについて見られたものと同様のX対の導電性の挙動を示す、2 .Thereは、導電性の初期増加とはxは 1から2へのPAH比、さらに李1 TPB(THF)...

開示事項

著者らは、開示することは何もありません。

謝辞

著者は、このプロジェクトのための教育のTier 2研究基金(プロジェクトMOE2013-T2-2-002)のシンガポール省からの資金調達を認めます。

資料

NameCompanyCatalog NumberComments
Tetrahydrofuran Anhydrous, ≥99.9%, Inhibitor-freeSigma Aldrich401757-100ML
Lithium Foil Alfa Aesar010769.14
Cond 3310 Conductivity MeterWTWNot Applicable
1,3,5-triphenylbenzeneSynthesized from acetophenone according to procedure described in literature
Silicon tetrachlorideSigma Aldrich215120-100G
acetophenoneTCIA0061-500g
EthanolMerck Millipore1.00983.2511
CorannuleneSynthesized by literature procedure

参考文献

  1. Tan, K. S., Yazami, R. Physical-Chemical and Electrochemical Studies of the Lithium Naphthalenide Anolyte. Electrochim Acta. 180, 629-635 (2015).
  2. Tan, K. S., Grimsdale, A. C., Yazami, R. Synthesis and Characterisation of Biphenyl-Based Lithium Solvated Electrons Solutions. J Phys Chem B. 116, 9056-9060 (2012).
  3. Rinaldi, A., Tan, K. S., Wijaya, O., Wang, Y., Yazami, R., Menictas, C., Skyllas-Kazacos, M., Lim, T. M., Hughes, S. Ch. 11. Advances in batteries for large- and medium-scale energy storage applications in power systems and electric vehicles. , (2014).
  4. Wang, Y., Tan, K. S., Yazami, R. . Materials Challenges In Alternative & Renewable Energy (MCARE 2014). , (2014).
  5. Yazami, R., Tan, K. S. . in 8th annual Li Battery Power. , (2012).
  6. Yazami, R. Hybrid Electrochemical Generator With A Soluble Anode. US patent. , (2010).
  7. Yazami, R., Tan, K. S. Liquid Metal Battery. US patent. , (2015).
  8. Lim, Z. B., et al. Synthesis and assessment of new cyclopenta-2,4-dienone derivatives for energy storage applications. Synthetic Met. 200, 85-90 (2015).
  9. Butterfield, A. M., Gilomen, B., Siegel, J. S. Kilogram-Scale Production of Corannulene. Org. Process Res. Dev. 16, 664-676 (2012).
  10. Elmorsy, S. S., Pelter, A., Smith, K. The direct production of tri- and hexa-substituted benzenes from ketones under mild conditions. Tetrahedron Lett. 32, 4175-4176 (1991).
  11. Zabula, A. V., Filatov, A. S., Spisak, S. N., Rogachev, A. Y., Petrukhina, M. A. A Main Group Metal Sandwich: Five Lithium Cations Jammed Between Two Corannulene Tetraanion Decks. Science. 333, 1008-1011 (2011).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

116

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved