A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The authors report on conductivity studies carried out on lithium solvated electron solutions (LiSES) prepared using 1,3,5-triphenylbenzene (TPB) and corannulene as electron receptors.
The authors report on conductivity studies carried out on lithium solvated electron solutions (LiSES) prepared using two types of polyaromatic hydrocarbons (PAH), namely 1,3,5-triphenylbenzene and corannulene, as electron receptors. The solid PAHs were first dissolved in tetrahydrofuran (THF) to form a solution. Metallic lithium was then dissolved into these PAH/THF solutions to yield either blue or greenish blue solutions, colors which are indicative of the presence of solvated electrons. Conductivity measurements at ambient temperature carried out on 1,3,5-triphenylbenzene-based LiSES, denoted by LixTPB(THF)24.7 (x = 1, 2, 3, 4), showed an increase of conductivity with increase of Li:PAH ratio from x = 1 to 2. However, the conductivity gradually decreased upon further increasing the ratio. Indeed the conductivity of LixTPB(THF)24.7 for x = 4 is even lower than for x = 1. Such behavior is similar to that of the previously reported LiSES prepared from biphenyl and naphthalene. Conductivity versus temperature measurements on corannulene-based LiSES, denoted by LixCor(THF)247 (x = 1, 2, 3, 4, 5), showed linear relationships with negative slopes, indicating a metallic behavior similar to biphenyl and naphthalene-based LiSES.
Lithium solvated electron solutions (LiSES) prepared using simple two-ring polyaromatic hydrocarbons (PAH) such as biphenyl and naphthalene can potentially be utilized as liquid anodes in refuelable lithium cells1-7. In the LiSES, these simple PAH molecules served as the electron receptors for solvated electrons from dissolved metallic lithium.
Progressing from these two-ring systems, the authors have since then carried out conductivity measurement studies on LiSES which are prepared using more complex PAHs, starting with the group of cyclopenta-2,4-dienone derivatives8. These PAHs include larger PAHs (>two benzene rings) and PAHs with substituents incorporated into their aromatic rings. A larger PAH molecule with more than two rings is expected to accommodate more lithium atoms per PAH molecule than either biphenyl or naphthalene thus resulting in LiSES with a higher energy density. The objective of introducing substituents into PAHs is to make the PAH accept electrons more readily and become more stable as polyanions in LiSES.
As part of ongoing efforts to develop LiSES with higher energy density, this paper will report on the characterization of LiSES prepared from corannulene made by the literature procedure9 as well as 1,3,5-triphenylbenzene, TPB synthesized by a slightly modified literature 10. 1,3,5-triphenylbenzene, as shown in Figure 1(1), can be classified as a biphenyl derivative with two additional phenyl rings at positions 3 and 5 of the same ring. Since this molecule has four benzene rings, it should uptake 4 atoms of Li per molecule, which is more than for biphenyl (maximum 2.5 mole equivalents of Li per PAH in 0.5 M solution) and naphthalene (<2.5 mole equivalents of lithium per molecule).
Corannulene is a five-ring PAH arranged into a bowl shape as shown in Figure 1(2). Zabula et al.11 have demonstrated the feasibility of dissolving metallic lithium in a solution of corannulene/tetrahydrofuran (THF) to form a solution with five Li+ ions sandwiched between two stable tetraanions of corannulene.
Figure 1: The molecular structures of 1,3,5-triphenylbenzene (1) and corannulene (2). 1,3,5-triphenylbenzene is classified as a biphenyl derivative with two additional phenyl rings at positions 3 and 5 of the same ring. Corannulene is a five-ring PAH with its five benzene rings arranged into a bowl shape. Please click here to view a larger version of this figure.
Thus, both 1,3,5-triphenylbenzene and corannulene are potential candidates for high energy density LiSES.
1. Preparation Procedure for 1,3,5-Triphenylbenzene (1)
2. LiSES Prepared with 1,3,5-Triphenylbenzene
3. Corannulene
Reaction between various amounts of lithium and mixtures of 1,3,5-triphenylbenzene with THF gives greenish blue or deep blue colored solutions as shown in Figure 2. A light color indicates that the particular sample of LiSES has a low concentration of solvated electrons. 1,3,5-triphenylbenzene demonstrates increase of conductivity with increase of Li:PAH ratio from 1 to 2 in 0.5 M THF solution (Table 1). However, conductivity value gradually decreases upon further increasing the molar ra...
For the 1,3,5-triphenylbenzene-based LiSES, a sample with a light color shows that it has a low concentration of solvated electrons. LixTPB(THF)24.7 (for x = 1, 2, 3, 4) demonstrates a behavior in its conductivity versus x similar to that seen for LiSES made from biphenyl and naphthalene1, 2.There is an initial increase in conductivity with increase of Li:PAH ratio from 1 to 2 and a subsequent decrease in conductivity upon further increasing the molar ratio to 3 and 4, with condu...
The authors have nothing to disclose.
The authors acknowledge funding from the Singapore Ministry of Education Tier 2 Research Fund (project MOE2013-T2-2-002) for this project.
Name | Company | Catalog Number | Comments |
Tetrahydrofuran Anhydrous, ≥99.9%, Inhibitor-free | Sigma Aldrich | 401757-100ML | |
Lithium Foil | Alfa Aesar | 010769.14 | |
Cond 3310 Conductivity Meter | WTW | Not Applicable | |
1,3,5-triphenylbenzene | Synthesized from acetophenone according to procedure described in literature | ||
Silicon tetrachloride | Sigma Aldrich | 215120-100G | |
acetophenone | TCI | A0061-500g | |
Ethanol | Merck Millipore | 1.00983.2511 | |
Corannulene | Synthesized by literature procedure |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved