JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

ここでは、シアノバクテリア細胞のグリコーゲン含有量を測定するための信頼性の高い簡単なアッセイを提示します。この手順は、沈殿、選択可能な解重合、およびグルコース残渣の検出を必要とする。この方法は、野生型および遺伝子操作された株の両方に適しており、シアノバクテリアの代謝工学を促進することができる。

要約

シアノバクテリアは、光合成の間に主要な細胞内炭素およびエネルギー貯蔵としてグリコーゲンを蓄積する。最近の研究の進展により、生合成と異化のディールサイクル、レドックス調節、非コードRNAの関与を含む、グリコーゲン代謝の複雑なメカニズムが明らかになった。同時に、産物収量を増強するために、遺伝子操作されたシアノバクテリア中のグリコーゲンから望ましい産物に炭素をリダイレクトする努力がなされている。さまざまな精度と技術的な複雑さを伴い、シアノバクテリアのグリコーゲン含量を決定するためにいくつかの方法が使用されています。ここでは、標準的なライフサイエンス研究室で行うことができるシアノバクテリアのグリコーゲン含量の信頼できる測定のための詳細なプロトコールを提供します。プロトコールは、細胞溶解物からのグリコーゲンの選択的沈殿およびグリコーゲンの酵素的解重合によってグルコース単量体を生成し、これはグルコースオキシidase-peroxidase(GOD-POD)酵素結合アッセイを用いて測定した。この方法は、 Synechocystis sp。 PCC 6803およびSynechococcus sp。代謝工学で広く使用されている2つのモデルのシアノバクテリア種、PCC 7002。さらに、該方法は、野生型と調節エレメントまたはグリコーゲン生合成遺伝子に欠損を有する変異体との間のグリコーゲン含量の差異を首尾よく示した。

概要

シアノバクテリアは、光合成により光に固定されたCO 2から炭素の主要な炭水化物貯蔵物としてグリコーゲンを蓄積する。グリコーゲンは、α-1,6-結合グルコシル結合によってつくられる分枝を有する線状α-1,4-結合グルカンからなるグリカンである。シアノバクテリアにおけるグリコーゲン生合成は、ホスホグルコムターゼおよびADP-グルコースピロホスホリラーゼの連続作用によるグルコース-6-リン酸のADP-グルコースへの変換から始まる。 ADP-グルコース中のグルコース部分は、1種以上のグリコーゲンシンターゼ(GlgA)によってグリコーゲンのα-1,4-グルカン主鎖の非還元末端に転移される。続いて、分枝酵素はα-1,6-結合グルコシル結合を導入し、これはさらに伸長してグリコーゲン粒子を生成する。暗所では、グリコーゲンは、グリコーゲンホスホリラーゼ、グリコーゲン脱分岐酵素、α-グルカノトランスフェラーゼ、およびマルトデキストリンホスホリラーゼによってリン酸化されたグルコースおよび遊離グルコースに分解される。これらのフィードintO酸化的ペントースリン酸経路、エムデン-マイヤーホフ-パルナス経路(解糖)、およびエントナー・ドゥドロフ経路1、2、3、4を含む異化経路、。

シアノバクテリアのグリコーゲン代謝は、シアノバクテリアが日光によって駆動される微生物細胞工場に発展して化学物質や燃料を生産する可能性があるため、近年注目を集めています。グリコーゲン代謝は、グリコーゲンがこれらの細菌における最大の柔軟な炭素プールであるため、生成物の収量を増加させるように改変することができる。一例はシアノバクテリウム・シネココッカス sp。マンニトールを生産するように遺伝子操作されたPCC7002;グリコーゲン合成の遺伝的破壊はマンニトール収率を3倍に増加させる5 。別の例は、グリコーゲン負荷野生動物からのバイオエタノールの生産であるSynechococcus sp。 PCC 7002 6 。野生型細胞のグリコーゲン含有量は、窒素飢餓6中の細胞の乾燥重量の60%までとすることができます。

グリコーゲンの代謝および調節に関する我々の理解も近年拡大している。グリコーゲンは、光の中に蓄積し、暗所で異化されることが知られているが、ディールサイクル中のグリコーゲン代謝の詳細な動態は、 Synechocystis sp。 PCC 6803 7 。さらに、グリコーゲンの蓄積に影響を及ぼすいくつかの遺伝子が同定されている。顕著な例は、推定ヒスチジンキナーゼPmgAおよび非コードRNA PmgR1が調節カスケードを形成し、グリコーゲンの蓄積を制御するという発見である。興味深いことに、 pmgAおよびpmgR1欠失突然変異体は、 シネコシスティス spの野生型株の2倍のグリコーゲンを蓄積する。 PCC 68038、9。他の調節エレメントは、代替シグマ因子Eおよび転写因子CyAbrB2 10、11を含め、グリコーゲンの蓄積に影響を与えることが知られています。

グリコーゲン調節および代謝に関心が高まるにつれて、グリコーゲン含量の決定を記述する詳細なプロトコルが正当化される。いくつかの方法が文献で使用されている。パルスアンペロメトリック検出器または酸とフェノールと処置後分析決意に結合された高圧陰イオン交換液体クロマトグラフィーを介して単糖類含有量の決意に続く酸加水分解が広くグリコーゲン含量9、10、12、13近似する方法を使用しています。しかしながら、高圧アニオン交換液体クロマトグラフィーC機器は非常に高価であり、いくつかのシアノバクテリア種中に蓄積することが知られているようなスクロース14、グルコ15、及びセルロース16、17、18のような他のグルコース含有複合糖質、に由来するものからグリコーゲン由来のグルコースを区別しません。酸 - フェノール法は、標準的な実験装置を用いて行うことができる。しかし、毒性の高い試薬を使用し、異なる複合糖質由来のグルコースを区別しておらず、そのような糖脂質、リポ多糖、および外マトリックス12などの細胞材料を構成する他の単糖からグルコースを区別しません。特に、熱い酸 - フェノールアッセイは、グルコース含量の特定の決定12ではなく、総炭水化物含量の決定にしばしば用いられる。酵素的ハイα-アミログルコシダーゼによるグリコーゲンのグルコースへのグルコースの加水分解、その後の酵素結合アッセイによるグルコースの検出は、グリコーゲン由来のグルコースに対して非常に感受性が高く特異的な比色測定値を生成する。特異性は、エタノール5、8、19によって細胞溶解物からのグリコーゲンの優先析出をさらに向上させることができます。

ここでは、最も広く研究されている2つのシアノバクテリア種であるSynechocystis sp。のグリコーゲン含量の酵素ベースのアッセイの詳細なプロトコールについて説明します。 PCC 6803およびSynechococcus sp。 PCC7002を野生型株および変異株に導入した。効率的な加水分解を確実にするために、α-アミラーゼおよびα-アミログルコシダーゼのカクテルを使用する8 。エンド作用性α-アミラーゼは、種々のグルカン中のα-1,4-結合を加水分解してデキストリンとし、さらに加水分解しexo-actingα-アミログルコシダーゼ20によってグルコースを分解する。これらの酵素の相乗効果は周知であり、これらの酵素は、植物バイオマス21中のセルロースなどの他の糖質結合剤に影響を及ぼすことなく、α結合グルカン様グリコーゲンであるデンプンの選択的加水分解に日常的に使用されている。放出されたグルコースは、酸素の過酸化水素への還元およびグルコースのラクトンへの酸化を触媒するグルコースオキシダーゼおよび過酸化水素からピンク色のキノンイミン染料を生成するペルオキシダーゼからなる酵素結合アッセイに従って定量的に検出され、フェノール化合物、および4-アミノアンチピリン22

プロトコル

1.準備

  1. シアノバクテリア培養
    1. 成長するSynechocystis sp。 1%(v / v)CO 2を補充した一定量の空気を供給しながら、液体BG11培地8中、30℃でPCC 6803。 50μmol光子/ m 2 / sの光合成光子束密度で光で連続的に培養物を照明する。
    2. 成長するSynechococcus sp。 1%(v / v)CO 2を補充した空気を一定にして、液体A +培地23 (BG11培地も使用することができる)中のPCC7002。温度は37℃でなければなりません。 150μmol光子/ m 2 / sの光合成光子束密度で光を用いて連続的に培養物を照明する。
    3. 1cmの光路を有するキュベットを用いて730nmで培養物の光学密度(OD)を測定する。 OD値が0.8より大きい場合、適切な希釈を行い、OD測定値を得る。e細胞濃度。
      注記:以下に示すプロトコールは、OD 730nm値2以上に対応する細胞密度を有する液体培養に適している。指数関数的増殖期の培養物(典型的にはOD 730nm値が1未満である)が望ましい場合、OD 730nm値が2以上になるように緩衝液または培地中で遠心分離および再懸濁により細胞密度を濃縮する。
  2. バッファーと試薬
    1. pH 8で50mM Tris-HCl緩衝液を調製する。
    2. 50mM酢酸ナトリウム緩衝液をpH5にする。
    3. 50mM酢酸ナトリウム緩衝液(pH5)中の8U / mLアミログルコシダーゼのストック溶液を調製する。
    4. 50mM酢酸ナトリウム緩衝液(pH5)中に2U / mLのα-アミラーゼのストック溶液を調製する。
    5. 蒸留水を使用して、0〜100μg/ mLの範囲の濃度でメイクグルコース標準溶液を調製する。
    6. D-グルコースアッセイキット(GODPODフォーマット)からGOD-POD試薬を調製し、fメーカーの指示に従ってください。

2.細胞乾燥重量の測定(オプション)

  1. 2 mLの培養液または細胞再懸濁液(ステップ1.1参照)を2.0 mLチューブに移し、6,000 xgおよび4 o Cで5分間遠心します。上清を捨てる。
  2. ペレットを1 mLの水に再懸濁し、6,000 xgで4℃で5分間遠心します。上清を捨て、細胞ペレットを0.5mLの水に再懸濁する。
  3. サスペンションを予め計量されたアルミニウムトレイに移す。一晩乾燥(約18時間)するために、トレーを105℃の乾燥オーブンに移す。
    重要:トレイからの材料の移動を避けるために、鉗子でトレイを取り扱うことが重要です。同じ条件で空のあらかじめ計量されたアルミニウムトレイを乾燥させて、乾燥中のトレイからの重量損失を測定する。
  4. 乾燥後、トレーをオーブンから取り出し、周囲温度で平衡させるそれを0.0001gの精度で計量する前に5分間保持する。
    注記:この値は、細胞乾燥重量ベースでグリコーゲン含有量を標準化するために使用することができます。

3.シアノバクテリア細胞の溶解

  1. 1mLの培養液または細胞再懸濁液(ステップ1.1を参照)を1.5mLチューブに移し、6,000×gおよび4℃で10分間遠心分離する。上清を捨てる。
  2. ペレットを1 mLの50 mM Tris-HCl(pH 8)に再懸濁し、6,000 xgで4℃で10分間遠心分離します。上清を捨て、細胞ペレットを1mLのTris-HCl緩衝液に再懸濁する。プロセスを繰り返します。
  3. ペレットを500μLの50mM Tris-HCl緩衝液(pH 8)に徹底的に再懸濁する。
    重要:ペレットを効率よく細胞溶解するために再懸濁する。再懸濁液を氷に入れておきます。
  4. 再懸濁した細胞を4℃で30サイクルの超音波処理を行い、各サイクルは最大振幅の20kHzの周波数で30秒間行い、それに続く90秒が続く。
    注:この方法は、 Synechococcus spを効率的に溶解することができます。 PCC7002。
    1. あるいは、細胞再懸濁液をスクリューキャップチューブに移し、製造業者の指示に従って、酸化ジルコニウムビーズをチューブに添加する。組織ホモジナイザーにチューブをセットし、ビーティングの2サイクルを行うことにより4℃で細胞を溶解する。各サイクルは、周波数設定5で5分で構成される。
      注:この方法は、 Synechocystis sp。を効率よく溶解することができる。 PCC 6803およびSynechococcus sp。 PCC7002。
  5. ライセートを含むチューブを6,000 xgおよび4℃で10分間遠心します。
    注:ペレットは、主に大きな細胞破片で構成されています。十分な数の破損していないセルがある場合は、手順3.4を繰り返します。上清を氷上に保つ。
  6. 市販のBCA Proteinアッセイキットを使用してタンパク質濃度を測定する。
    注:この値は、グリコーゲン含有量を標準化するために使用することができますタンパク質含有量ベースで測定した。

4.グリコーゲン沈殿

  1. 96%(v / v)エタノール900μLとステップ3.5の上清100μLを1.5mLスクリューキャップチューブに混合することにより、細胞溶解物からクロロフィルaを除去する。キャップを閉めた後、標準の実験室用加熱ブロックを使用してチューブを90℃で10分間加熱します。
  2. チューブを氷上で30分間インキュベートする。
  3. チューブを20,000×gおよび4℃で30分間遠心分離し、上清を慎重に除去する。ペレットはグリコーゲンを含む。ペレットを軽く乾燥させて過剰のエタノールを除去する。
    重要:ペレットの過度の乾燥は避けなければならない。さもなければ、ステップ5.1で可溶化することが困難になる。
  4. オプション:ステップ4.3で得られた上清の664nmでの吸光度を測定し、クロロフィルa含量を決定する。 84.6 L / g / cm 24の吸収係数を使用してください。
    注:値をnormalizに使用することができますグリコーゲン含有量。

5.酵素加水分解およびグリコーゲン測定

  1. ステップ4.3で得られたペレットを50mM酢酸ナトリウム(pH5)100μLに可溶化し、8U / mLのアミログルコシダーゼ50μLと2U / mLのα-アミラーゼ50μLを添加する。ボルテックスを用いてこれらの材料をよく混合する。
    注:グリコーゲンペレットは粘性であるため、ピペッティングによる混合は推奨されません。
  2. 混合物を60℃で加熱ブロック上で2時間インキュベートし、グリコーゲンがグルコース分子に消化されるようにする。
  3. サンプルを10,000 xgで5分間遠心分離し、上清を新しい1.5 mLチューブに移す。

GOD-POD試薬を用いた総グルコース含量の測定

  1. ステップ5.3で得られた上清中のグルコース濃度をGOD-POD試薬を用いて測定する。ステップ5.3の上清100μLを96ウェルプレートのウェルに移す。ネガティブコントロールとして、100μLの50 mM酢酸ナトリウム、pH 5を使用する。検量線を作成するには、グルコース標準溶液も測定する。
  2. 各サンプルに150μLのGOD-POD試薬を加え、ピペッティングで迅速に混合します。
  3. プレートを静的に25℃で30分間インキュベートする。プレートリーダーを用いて吸光度値を510 nmで記録する。
  4. グルコース標準から得られた較正曲線を用いてグルコースの濃度を計算する。
    注:細胞溶解液中のグリコーゲン濃度は、グルコースの濃度(μg/ mL)として表されます。

結果

10mLの野生型シネコシスティス種。 PCC 6803を、OD 730nm値が約0.8に達するまで、光合成独立栄養条件下で増殖させた。細胞を回収し、pH8の50mM Tris-HClに再懸濁した.OD 730nm値を2-3に調整した。グリコーゲン含量は、上記のプロトコルに従って分析した。 OD 730nmあたりのグリコーゲン含量は、13± 1.8μg / mL / OD 730nmN = 12?...

ディスカッション

プロトコル内の重要なステップは、グリコーゲン沈殿および再懸濁である。エタノール沈殿後の遠心分離後、グリコーゲンは、微量遠心管の壁に緩く付着する半透明ペレットを形成する。したがって、上清を除去する際には、ペレットを除去しないように注意する必要があります。グリコーゲンペレットは粘着性があり、乾燥すると可溶化が困難になります。グリコーゲンペレットの完全な?...

開示事項

著者は何も開示することはない。

謝辞

著者らは、デンマークのInnovationfonden Denmark(Pant Power、プロジェクト番号12-131844)、Villum Fonden(プロジェクト番号13363)のNordic Energy Research(AquaFEED、プロジェクト番号24)

資料

NameCompanyCatalog NumberComments
QSonica Sonicators Q700Qsonica, LLCNAQSonica
SpectraMax 190 Microplate Reader Molecular DevicesNAEliza plate reader
Bullet Blender StormNext AdvanceBBY24M-CEBeads beater
Ultrospec 3100 pro UV/Visible SpectrophotometerAmersham BiosciencesNASpectrophotometer
Tris Sigma-AldrichT1503Buffer
HClMerck1-00317pH adjutment
Sodium acetateSigma-Aldrich32319Buffer
Amyloglycosidase (Rhizopus sp.)MegazymeE-AMGPUEnzyme for glycogen depolymerization
α-Amylase, thermostable (Bacillus licheniformis)Sigma-AldrichA3176Enzyme for glycogen depolymerization
D-GlucoseMerch8337Standard for the glucose assay
Pierce BCA Protein assay kit Thermo Fisher scientific23225For determination of protein concentrations
Aluminum drying trays, disposableVWR611-1362For determination of cell dry weights
D-Glucose assay kit (GODPOD format)MegazymeK-GLUCFor determination of glucose concentrations
Zirconium oxide breads, 0.15 mmNext AdvanceZrOB015Beads for cell lysis in a Bullet Blendar Storm
RINO tubesNext AdvanceNATubes for cell lysis in a Bullet Blendar Storm

参考文献

  1. Chen, X., et al. The Entner-Doudoroff pathway is an overlooked glycolytic route in cyanobacteria and plants. Proc Natl Acad Sci USA. 113 (19), 5441-5446 (2016).
  2. Yang, C., Hua, Q., Shimizu, K. Metabolic flux analysis in Synechocystis using isotope distribution from C-13-labeled glucose. Metab Eng. 4 (3), 202-216 (2002).
  3. Pelroy, R. A., Levine, G. A., Bassham, J. A. Kinetics of light-dark CO2 fixation and glucose assimilation by Aphanocapsa 6714. J Bacteriol. 128, 633-643 (1976).
  4. You, L., Berla, B., He, L., Pakrasi, H. B., Tang, Y. J. 13C-MFA delineates the photomixotrophic metabolism of Synechocystis. sp. PCC 6803 under light- and carbon-sufficient conditions. Biotechnol J. 9, 684-692 (2014).
  5. Jacobsen, J. H., Frigaard, N. U. Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab Eng. 21, 60-70 (2014).
  6. Möllers, K. B., Cannella, D., Jørgensen, H., Frigaard, N. -. U. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels. 7, 64 (2014).
  7. Angermayr, S. A., et al. Culturing Synechocystis. sp. strain PCC 6803 with N2 and CO 2 in a diel regime reveals multiphase glycogen dynamics with low maintenance costs. Appl Environ Microbiol. 82, 4180-4189 (2016).
  8. de Porcellinis, A. J., et al. The Non-coding RNA Ncr0700/PmgR1 is required for photomixotrophic growth and the regulation of glycogen accumulation in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 57 (10), 2091-2103 (2016).
  9. Sakuragi, Y. alpha-Tocopherol plays a role in photosynthesis and macronutrient homeostasis of the cyanobacterium Synechocystis sp. PCC 6803 that is independent of its antioxidant function. Plant Physiol. 141, 508-521 (2006).
  10. Osanai, T., et al. Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis. sp. PCC 6803 by the group 2 sigma factor sigE. J Biol Chem. 280, 30653-30659 (2005).
  11. Yamauchi, Y., Kaniya, Y., Kaneko, Y., Hihara, Y. Physiological roles of the cyAbrB transcriptional regulator pair Sll0822 and Sll0359 in Synechocystis sp. strain PCC 6803. J Bacteriol. 193, 3702-3709 (2011).
  12. Dubois, M., Gilles, K., Hamilton, J., Rebers, P., Smith, F. Colorimetric method for determination of sugars and related substances. Anal Chem. 28, 350-356 (1956).
  13. Osanai, T., et al. Genetic engineering of group 2 {sigma} factor SigE widely activates expressions of sugar catabolic genes in Synechocystis species PCC 6803. J Biol Chem. 286, 30962-30971 (2011).
  14. Miao, X., Wu, Q., Wu, G., Zhao, N. Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Letters. 218, 71-77 (2003).
  15. Hagemann, M., Erdmann, N. Activation and pathway of glucosylglycerol synthesis in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology. 140, 1427-1431 (1994).
  16. Nobles, D. R., Romanovicz, D. K., Brown, R. M. Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase. Plant Physiol. 127, 529-542 (2001).
  17. Zhao, C., et al. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002. Cell Discovery. 1, 15004 (2015).
  18. Kawano, Y., et al. Cellulose accumulation and a cellulose synthase gene are responsible for cell aggregation in the cyanobacterium Thermosynechococcus vulcanus RKN. Plant Cell Physiol. 52, 957-966 (2011).
  19. Angermayr, S. A., Gorchs Rovira, A., Hellingwerf, K. J. Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol. 33, 352-361 (2015).
  20. Zhang, B., Dhital, S., Gidley, M. J. Synergistic and antagonistic effects of α-amylase and amyloglucosidase on starch digestion. Biomacromolecules. 14, 1945-1954 (2013).
  21. Harholt, J., et al. ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiol. 140, 49-58 (2006).
  22. Fernando, C. D., Soysa, P. Optimized enzymatic colorimetric assay for determination of hydrogen peroxide (H2O2) scavenging activity of plant extracts. MethodsX. 2, 283-291 (2015).
  23. Jacobsen, J. H., Rosgaard, L., Sakuragi, Y., Frigaard, N. U. One-step plasmid construction for generation of knock-out mutants in cyanobacteria: studies of glycogen metabolism in Synechococcus sp PCC 7002. Photosynth Res. 107 (2), 215-221 (2011).
  24. Lichtenthaler, H. K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350-382 (1987).
  25. López, C. V. G., del Carmen Cerón García, M., Fernández, F. G. A., Bustos, C. S., Chisti, Y., Sevilla, J. M. F. Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technol. 101, 7587-7591 (2010).
  26. Hasunuma, T., et al. Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. J Exp Bot. 64, 2943-2954 (2013).
  27. Díaz-Troya, S., López-Maury, L., Sánchez-Riego, A. M., Roldán, M., Florencio, F. J. Redox regulation of glycogen biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803: Analysis of the AGP and glycogen synthases. Molecular Plant. 7, 87-100 (2014).
  28. Parrott, L. M., Slater, J. H. The DNA, RNA and protein composition of the cyanobacterium Anacystis nidulans grown in light- and carbon dioxide-limited chemostats. Arch Microbiol. 127, 53-58 (1980).
  29. Hihara, Y., Kamei, A., Kanehisa, M., Kaplan, A., Ikeuchi, M. DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell. 13, 793-806 (2001).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

Biochemistry Cyanobacteria sp PCC6803 sp PCC7002

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved