サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

子宮内膜症の多くのげっ歯類モデルは、技術的な複雑さ、再現性、および/または免疫不全動物または特別なレポーターマウスの必要性によって制限されています。我々は、独立して検証可能な客観的なスコアリングシステムを有し、卵巣切り出しまたは生存手術の要件を持たない任意の実験マウスを使用して、病変誘導の簡略化されたシステムを提示する。

要約

子宮内膜症は、骨盤痛と不妊の主な原因です。それは子宮外の場所で子宮内膜組織の存在によって定義される。子宮内膜症の新しい治療法と診断ツールの開発は、病気の研究における課題の一部のために限られています。霊長類の外では、月経する哺乳類はほとんどおらず、自発的な子宮内膜症を発症するものはない。げっ歯類モデルは一般的であるが、子宮内膜症の人工的な誘導を必要とし、多くは免疫不全マウスまたは外科的に誘発された疾患のいずれかを利用している。最近では、腹腔内注射を伴うモデルに対して、より注目が集まってきた。既存の子宮内膜症モデルのいくつかの特徴を、主観的なグレーディングの代わりに顕微鏡的な定量化に依存する新しい単純化されたシステムに統合した子宮内膜症のマウスモデルを提示する。本モデルでは、ドナーマウスのホルモン刺激、腹腔内注射、系統的な腹部調査と組織収穫、および壊死後の任意の時点で行い、検証することができる組織学的定量を行う。このモデルは最小限のリソースとトレーニングを必要とします。マウスサバイバル手術や子宮内膜病変の識別におけるラボ技術者による専門知識を必要としません。免疫不全、免疫能力、変異マウスで使用できます。そして確実にヒト子宮内膜疾患と組織学的に一致している子宮内膜病変を作成する。

概要

子宮内膜症は、女性の1,2に大きな経済的および健康上の負担を伴う女性生殖管の謎めいた病気である。子宮内膜症の病因は完全には理解されておらず、血中性代謝、胚性ミュレリアレス、骨髄由来前駆細胞の募集、および逆行月経3を含む複数の説明が提案されている。これらの提案されたメカニズムの複数の側面が関与する可能性があり、単一の説明が病気のすべての形態を説明することはできませんが、子宮内膜症の病因の主要なモデルは、月経を逆行することです。逆行性の月経は、卵管を通って腹腔内に月経排水の通路です。月経中の女性の90%が定期的に逆行月経4,5を受けると推定されている。この逆行月経の一般的な現象を考えると、なぜ子宮内膜症が女性のサブセットでのみ発症するのかは不明である5.この病気の病因をよりよく理解するために、直接的なヒト研究は実現不可能であり、動物実験が保証されている。

子宮内膜症は治療と勉強の両方の課題です。この疾患の罹患率は知られていないが、10%と推定されるいくつかの高度なタイプの子宮内膜症は、非侵襲的なイメージングを通じて正確に同定されるかもしれませんが、決定的な診断は外科的に得られた生検標本の病理組織学的分析によってのみ達成される。目視で罹患しているように見える病変は、実際には、他の原因から線維症または瘢痕化する可能性がある6。重症度と疾患の程度は症状学7と相関しない。

子宮内膜症病変は、微小環境内で複雑な相互作用をする異種細胞型および集団から構成され、したがって、細胞モデル8,9の有用性を制限する。インビボモデルは存在するが、これらは固有の課題と制限を有する10、11、12。霊長類モデルは理想的ですが、多くの場合、実現可能ではありません13,14,15.少数の非霊長類哺乳動物は、月経し、自発的に子宮内膜症を発症する16.子宮内膜症のげっ歯類モデルが存在するが、それぞれに制限がある 17.これらのモデルの多くは、縫合またはドナーレシピエントの壁または腸に子宮内膜組織を移植する生存手術を必要とし、技術的な複雑さ、麻酔の必要性、および手術自体18、19、20からの免疫因子の交和を加える。さらに, 多くのモデルは、卵巣切り分けとエストロゲン補充を必要とします;病変収量を増加させながら、これは時間、費用、および追加の生存手術を追加します。腹腔内(IP)注射モデルは麻酔や生存手術を必要とせず、これらのモデルはモデル21、22、23を縫合するよりも逆行月経を論理的にシミュレートする。しかし、ほとんどのIPモデルは、注入後の子宮内膜フラグメントのランダム分散による病変位置の変動に左右され、したがって病変の同定および測定におけるより多くのバイアスに影響を及ぶ。

ここでは、既存の子宮内膜症モデルのいくつかの特徴を、主観的なグレーディングの代わりに顕微鏡的な定量化に依存する新しい、単純化された効率的なシステムに統合した子宮内膜症のマウスモデルを提示する。

プロトコル

注:この研究における動物の使用は、クリーブランドクリニックラーナー研究所の施設動物ケアおよび使用委員会(IACUC)によって承認されました。一般に公開されているすべての動物ケアと使用基準は、国立衛生研究所のガイドラインに従って実施されました。この手順は、無菌技術を利用しています。ペトリ皿は無菌です。使用されるPBS/生理学は無菌です。壊死および組織解剖のための外科器具はオートクレーブによって殺菌される。汚染を減らすには、動物のケース間の機器に70%EtOH(セッションごとに複数の場合)を使用しています。

1.ドナーマウスとレシピエントマウスの調製 ( 図1参照)

  1. 実験動物と連携するための適切な承認が実施されていることを確認します。
  2. マウスのひずみを特定します。これらの実験では、C57BL/6Jバックグラウンドを有する野生型および変異型マウスが利用されたが、同様のモデルを用いた研究者はBALB/cマウスなどの他のマウス株での成功を報告する。さらに、ドナーマウスおよび/またはレシピエントマウスは、GFPまたはRFPマウスなどのレポーターシステムを利用することができる(図2および図3を参照)。
  3. 子宮内膜組織移植のタイミングについては、ドナーマウスがゴナドトロピン注射時に22〜24日の間であることを確認してください。これは、彼らが生殖的にナイーブであることを保証します, 例えば, まだestrousサイクリングを開始していません.
  4. レシピエントマウスが、2~4ヶ月の間に生殖に残っていることを確認します(卵巣切り出し前の切り出し術はありません)。必須ではありませんが、男性のマウスケージから尿浸しの寝具を定期的にレシピエントのケージに入れて、継続的なestrousサイクリングを容易にし、子宮内膜組織移植の前に72時間で再び行うことを推奨します。
    注:配置尿浸し寝具は使用される男性の寝具の量に大きく依存し、可変的な結果を有するので、これは、レシピエントのエストルースサイクルの同期を保証しません。エトルサイクルの同期が望ましい場合、100 ng/100 μLエストラジオールの3回連続の皮下注射は、すべての動物をエストルス期に導く。エストルースサイクルの段階に基づく病変誘導に違いは見つからなかったが、他のグループはサイクルフェーズが重要であることを発見した。
  5. 皮下に妊娠中のマーレ血清性性腺刺激ホルモン(PMSG、2IUを200μLに希釈)を細かい針を用いて皮下マウスに注射する(25-27 G推奨)それは排卵とその後の高プロゲステロン環境を引き起こすので、レシピエントマウスにPMSGを与えないでください, 子宮内膜症形成に受容性が低いです.
    注:以前のマウスモデルは、子宮内膜収穫23の前にドナーマウスの子宮内膜増殖を刺激するためにPMSGまたはエストロゲンのいずれかを利用している。PMSGは以下の理由で推奨されています: PMSG の半減期は 40 時間ですが、17-β-エストラジオールの半減期は 2 時間だけです。子宮内膜組織の調達前にドナー40時間にPMSGを単一の皮下注射を利用すると、性腺刺激への曝露の持続持続期間を提供し、これは内因性エストロゲンを刺激する作用をする。外因性エストロゲンの多くの調製物は、適切に子宮内膜をプライムするために複数の注射を必要とします.
  6. PMSG注射に続いて、38〜42時間の間にレシピエントに壊死、調達、および移植をスケジュールする。子宮内膜組織の収穫は、42時間のポスト注射で起こる排卵前の組織の収集を確実にするために、ゴナドトロピン注射後に収穫する。排卵は高いプロゲステロン(P4)環境を作り出し、病変の確立を減らします。

2. ドナーマウス子宮内膜組織の調達

  1. ドナーマウスの安楽死後(CO2チャンバーを使用し、その後に子宮頸部脱臼を行い、腹部に70%エタノール溶液を噴霧する。これは、皮膚の植物相および外れた毛髪から調達された組織の汚染を減らすのに役立つ。はさみを解剖すると、皮膚と皮下組織を通して正中線で浅い横断切り取りを行います。次に、皮膚切開の各側を把持し、腹部を開くために鈍い牽引を使用する。
  2. 子宮を特定します。子宮を取り除く前に、隣接する結合組織を切り取ってください。それぞれの卵管のすぐ下の各子宮ホーンをトランセクトし、子宮頸部全体をトランセクトして子宮全体を取り除く。
  3. 腹腔から取り出した後、子宮を注意深く検査し、追加の末梢脂肪または結合組織を取り除きます。ペトリ皿の上に冷たいPBSの液滴に子宮を置きます。子宮全体の質量を決定し、文書化します。
  4. 子宮眼深部から各角をトランセクトし、各角の長さを最大化するように、切除を可能な限り眼深部に近づけます。解剖顕微鏡の助けを借りて、最初の角の内腔の内側に解剖ハサミの刃を1枚置き、チューブの長軸に沿って切ります。慎重に、どちらの側がセローザであり、どちらの側が上皮であることを念頭に置いて、チューブを開きます。
  5. 新しいペトリ皿に生理食前またはPBSの500 ccを置きます。表面張力のために液体は一緒に滞在します。
  6. 次いで、子宮の断片化を均一に行う。多くの小さな病変よりも大きな病変が少ない方がよい。まず、子宮内膜層をつかんで剥がすことで、上皮をミオメトリウムから分離することから始めます。
    1. あるいは、単にミオメトリウムから分離することなく組織を断片化する(上皮側が完全に露出している限り)、筋膜を保持すると、このモデルの生理学的関連性がヒト疾患に及ぼすのが軽減される。断片はできるだけ大きく、18Gの針を通過するのに十分な小ささを確認してください。(1 mm x 1 mm を推奨)。
    2. 最初の角からこれらの1mm x 1mm断片の10-12を収集します(これはC57BL/ 6Jマウスの40mg組織に大別します)。収集した断片を液体コレクションに入れる。
  7. マウスあたり約24個のフラグメントについて、他の子宮ホーンについても同じ手順を実行します。フラグメントの総数を文書化します。

3. レシピエントマウスへの組織断片の腹膜注射

  1. 1 ccシリンジの鈍い端を使用して、吊り下げられた1ミリメートルx 1 mmの断片を吸引する。合計ボリュームは 1 mL である必要があります。
  2. 18Gの針を完全な注射器に取り付け、液体を針に積み込みます。すべての組織が針を通過することを確実にするために、ペトリ皿に模擬注射を検討してください。
  3. 受信者のマウスを取ります。IP注入の前または後に、エストルースサイクルドキュメンテーション(膣オリフィスで電球注射器を使用して生理食音の10 μLを取得し、カバースリップでガラススライドにメッキ)
  4. 45度の角度でシリンジを用いた断片の腹腔内注射を行い、皮下注射しないように注意する。
  5. 注射後に断片が残っている場合は、注射のためにさらに200μLの流体を注射器に引き込み、すべての断片が腹腔内に正常に注入されるようにします。
  6. 出血や合併症が保証されなくなったら、レシピエントマウスをケージに戻し、通常の食事を与えます。

4. 子宮内膜病変の収穫

  1. 移植後のフラグメント注射後約21日でレシピエントマウスを安楽死させる。
    注:経験から、同様のモデルを使用して共同研究者との議論から、最大病変のサイズと数は移植後約3週間で発生します。3週間後、病変は大きさが後退し始める。IACUC承認の安楽死法が用いられる。
  2. 安楽死と頸部脱臼の後、動物の腹部に70%エタノールを吹き付け、皮膚をテントでテントにして、切除ハサミで表面的に切断します。皮膚と皮下空間をはさみで切開し、腹部を露状に開きます。
  3. さらなる解剖が行われる前に、総病変の完全な調査が行われ、口径によって測定された大きさが行われ、解剖学的領域に関して文書化される(下記参照)。
  4. 3つの異なる解剖学的領域の完全な収集を実行します(病変がひどく理解できるかどうかに関係なく)。病変が他の領域(例えば、腸)で見られる場合、これらは無視されるべきであり、病変が下の3つの領域のいずれかを横断しない限り、収集されない。
    1. A = 腹壁/腹膜(カセットに平らにするか、サンプル間で一貫している限りロールアップすることができます)。
    2. B =膵臓と腸間膜脂肪。
    3. C = パラウテリン結合組織と脂肪(子宮を取り囲むが、膀胱以外の器官を含まない白い輝く組織;膀胱を病変と間違えないように注意する)。
  5. 解剖された各領域をカセットに入れ、適切にラベル付けし、組織学的断面化のためのラボプロトコルに従ってホルマリンとプロセスに入れる。
  6. ホルマリンブロックは、2つの均一な深さで、組織面積あたり2枚のスライド(D1およびD2)にセクションする。

5. 子宮内膜病変のスコアリング

  1. スキャン(40倍の倍率で)とアーカイブスライド。
  2. デジタルスライド読み取りソフトウェアを使用して、子宮内膜病変のエッジ間の最長距離(X)を定義する - エッジが腺または間質で構成されているかどうか、それをマークします。連続病変は、間質に囲まれた腺によって定義されます。この線は必ずしも子宮内膜組織のみを横断するわけではありませんが(子宮内膜症の不規則な形状または起伏のある焦点上の端点を決定する場合のように)、2つの端点は連続的な間質および/または腺によって接続される必要があります(図4を参照)。
  3. 最初の行を横切って 2 番目の線 (Y) を 90 度、上記の規則に従って 2 番目の行の長さを決定します。
  4. 連続していない複数の病変が発生した場合は、それぞれに独自のXおよびY測定値を与える。
  5. 各スライドの最終スコアを各病変の領域の合計(X*Y)として計算します。
  6. 2 つのスライドのスコアのうち大きい方 (D1 対 D2) を、そのリージョンの最終スコア (A、B、C) として取ります。
  7. 各領域からのスコアを合計して、その動物の最終的な顕微鏡スコアを与えます。

結果

初期の概念実証実験のために、RFPマウスからのドナー子宮内膜を野生型レシピエントマウスに注射した。H&E染色は、子宮内膜症病変の古典的なアーキテクチャの病理組織学的確認を明らかにした(図3A)。蛍光顕微鏡は、問題の観察病変がドナーに由来することを確認した(図3B)。

第2の実験は、10の野生型C57BL/6Jドナーおよび10人?...

ディスカッション

我々の研究は、卵巣切除術および/または生存手術を必要とせずにマウスで子宮内膜症を確実に誘導することができ、腹部および組織学的分析の標準化された調査を使用して異所性子宮内膜病変を同定し、定量できることを示している。

子宮内膜症の多くのマウス研究は、ドナー子宮内膜が腸、腹壁?...

開示事項

著者らは開示する利益相反を持っていません。

謝辞

Reizes研究所のメンバーは、原稿の作成中に批判的なレビューと洞察を得ただけでなく、ラーナー研究所のイメージングとヒストロジーのコアに対して、データ収集とデータ分析の支援をしてくれたことに感謝します。この研究は、クリーブランド・クリニックの研究プログラム委員会を通じた内部助成金と、生殖調査・バイエル協会を通じた外部助成金によって支援されました。Reizes研究所の研究はまた、VeloSanoバイクを治すために、婦人科癌の研究優秀センター、および子宮癌研究のためのローラJ.フォガティ寄付椅子を通じて資金を提供しています。クリーブランド クリニックは図1図 2の著作権の許可を所有しています。

資料

NameCompanyCatalog NumberComments
Supplies for injecting PMSG into donor mouse
1 mL Tuberculin syringe with 27G needleFisher Scientific14-826-87
Pregnant mare serum gonadotropinSigma-Aldrich9002-70-4
Supplies for necropsy of donor mouse and tissue processing
6” serrated forceps, curved tipElectron Microscopy Sciences72993-6C
70% ethanol solutionPharmco33000HPLCCS4L70% solution dilute ethyl acetate 200 proof
Analytical balanceMettler ToledoME54TE
Carbon dioxideTriGas Supplier
Dissecting trayFisher ScientificS14000
No. 10 disposable scalpelFisher ScientificNC9999403
Scissors, curvedElectron Microscopy Sciences72941
Scissors, straightElectron Microscopy Sciences72940
Stereo microscopeLeica MicrosystemsLeica SE 4For tissue dissection
Sterile phosphate buffered saline (PBS)Institutional core facility supplies
Surgical instrument sterilization trayElectron Microscopy Sciences66112-02
Tissue culture dishesFisher Scientific08-772E
Weighing dishesFisher Scientific02-202-103
Supplies for injecting into recipient mouse
1 cc syringeBD Biosciences301025
18 G needleFisher Scientific148265d
200 uL pipette tipFisher Scientific02-707-422
Double distilled waterInstitutional core facility supplies
Latex bulbFisher Scientific03-448-21
Micro cover glass slipVWR48366-067
Microscope slideFisher Scientific12-544-7
Standard light microscopeLeica MicrosystemsDM ILFor evaluating vaginal cytology smears
Supplies for harvesting tissue from recipient mouse
10% Buffered formalinFisher ScientificSF100-4
Biopsy foam padsFisher Scientific22-038-222
Precision Digital CalipersElectron Microscopy Sciences62065-40
Processing/embedding cassettesFisher Scientific22-272416

参考文献

  1. Zondervan, K. T., Becker, C. M., Missmer, S. A. Endometriosis. England Journal of Medicine. 382 (13), 1244-1256 (2020).
  2. Schwartz, K., Llarena, N. C., Rehmer, J. M., Richards, E. G., Falcone, T. The role of pharmacotherapy in the treatment of endometriosis across the lifespan. Expert Opinion on Pharmacotherapy. 21 (8), 893-903 (2020).
  3. Giudice, L. C. Clinical practice. Endometriosis. New England Journal of Medicine. 362 (25), 2389-2398 (2010).
  4. D'Hooghe, T. M., Debrock, S. Endometriosis, retrograde menstruation and peritoneal inflammation in women and in baboons. Human Reproduction Update. 8 (1), 84-88 (2002).
  5. Ahn, S. H., et al. Pathophysiology and immune dysfunction in endometriosis. BioMed Research International. 2015, (2015).
  6. Falcone, T., Flyckt, R. Clinical management of endometriosis. Obstetrics and Gynecology. 131 (3), 557-571 (2018).
  7. Vercellini, P., et al. Association between endometriosis stage, lesion type, patient characteristics and severity of pelvic pain symptoms: a multivariate analysis of over 1000 patients. Human Reproduction. 22 (1), 266-271 (2007).
  8. Bulun, S. E., et al. Endometriosis. Endocrine Reviews. 40 (4), 1048-1079 (2019).
  9. Brueggmann, D., et al. Novel three-dimensional in vitro models of ovarian endometriosis. Journal of Ovarian Research. 7, 17 (2014).
  10. Dodds, K. N., Beckett, E. A. H., Evans, S. F., Hutchinson, M. R. Lesion development is modulated by the natural estrous cycle and mouse strain in a minimally invasive model of endometriosis. Biology of Reproduction. 97 (6), 810-821 (2017).
  11. Martinez, J., Bisbal, V., Marin, N., Cano, A., Gómez, R. Noninvasive monitoring of lesion size in a heterologous mouse model of endometriosis. Journal of Visualized Experiments: JoVE. (144), (2019).
  12. Pelch, K. E., Sharpe-Timms, K. L., Nagel, S. C. Mouse model of surgically-induced endometriosis by auto-transplantation of uterine tissue. Journal of Visualized Experiments: JoVE. (59), e3396 (2012).
  13. Nishimoto-Kakiuchi, A., et al. Spontaneous endometriosis in cynomolgus monkeys as a clinically relevant experimental model. Human Reproduction. 33 (7), 1228-1236 (2018).
  14. Nair, H. B., et al. An efficient model of human endometriosis by induced unopposed estrogenicity in baboons. Oncotarget. 7 (10), 10857-10869 (2016).
  15. Laganà, A. S., et al. Translational animal models for endometriosis research: a long and windy road. Annals of Translational Medicine. 6 (22), 431 (2018).
  16. Bellofiore, N., et al. First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus). Amercian Journal of Obstetrics and Gynecology. 216 (1), 1-11 (2017).
  17. Bruner-Tran, K. L., Mokshagundam, S., Herington, J. L., Ding, T., Osteen, K. G. Rodent models of experimental endometriosis: identifying mechanisms of disease and therapeutic targets. Current Women's Health Reviews. 14 (2), 173-188 (2018).
  18. Bilotas, M. A., et al. Interplay between endometriosis and pregnancy in a mouse model. PloS One. 10 (4), 0124900 (2015).
  19. Peterse, D., et al. Of mice and women: a laparoscopic mouse model for endometriosis. Journal of Minimally Invasive Gynecology. 25 (4), 578-579 (2018).
  20. Richards, E. G., et al. KLF11 is an epigenetic mediator of DRD2/dopaminergic signaling in endometriosis. Reproductive Sciences. 224 (8), 1129-1138 (2017).
  21. Jones, R. L., Lang, S. A., Kendziorski, J. A., Greene, A. D., Burns, K. A. Use of a Mouse Model of Experimentally Induced Endometriosis to Evaluate and Compare the Effects of Bisphenol A and Bisphenol AF Exposure. Environmental Health Perspectives. 126 (12), 127004 (2018).
  22. Greaves, E., et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. The American Journal of Pathology. 184 (7), 1930-1939 (2014).
  23. Nothnick, W. B., Graham, A., Holbert, J., Weiss, M. J. miR-451 deficiency is associated with altered endometrial fibrinogen alpha chain expression and reduced endometriotic implant establishment in an experimental mouse model. PloS One. 9 (6), 100336 (2014).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

165

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved