JoVE Logo

サインイン

このコンテンツを視聴するには、JoVE 購読が必要です。 サインイン又は無料トライアルを申し込む。

この記事について

  • 要約
  • 要約
  • 概要
  • プロトコル
  • 結果
  • ディスカッション
  • 開示事項
  • 謝辞
  • 資料
  • 参考文献
  • 転載および許可

要約

ここでは、ゼブラフィッシュの卵巣卵胞で濾胞細胞と卵母細胞を分離するための簡単な方法を提示し、ゼブラフィッシュにおける卵巣の発達の調査を容易にする。

要約

ゼブラフィッシュは、脊椎動物の卵巣の発達を研究するのに理想的なモデルとなっています。卵胞は卵巣の基本単位であり、卵母細胞および周囲の濾胞細胞からなる。卵胞細胞の一次培養、遺伝子発現の解析、卵母細胞成熟、体外受精など様々な研究目的で、卵胞細胞と卵母細胞の両方を分離することが重要です。従来の方法は、両方のコンパートメントを分離するために鉗子を使用し、これは面倒で時間がかかり、卵母細胞に高いダメージを与えます。ここでは、引っ張られたガラスキャピラリーを用いて、両方の区画を分離する簡単な方法を確立しました。立体顕微鏡では、卵母細胞と濾胞細胞は、引っ張られた細かいガラス毛細管でピペット処理することによって容易に分離することができる(直径は卵胞の直径に依存する)。従来の方法と比較して、この新しい方法は卵母細胞と濾胞細胞の両方を分離する効率が高く、卵母細胞への損傷が少ない。さらに重要なことは、この方法は、早期の卵胞に適用することができる前の早期発生期段階で。このように、この簡単な方法は、ゼブラフィッシュの濾胞細胞および卵母細胞を分離するために使用することができる。

概要

ゼブラフィッシュは脊椎動物の発達と生理学の研究のための主要なモデル生物です。ゼブラフィッシュは、卵巣の発達1、2、3の分子メカニズムを研究するための良いモデルとして役立ちます。卵巣の発達の多くの特徴は、魚から哺乳類1、2への進化の間に多く保存されている。他の脊椎動物と同様に、ゼブラフィッシュの成人は非同期卵巣を有し、全発育期4の卵巣卵胞を含む。卵胞は卵巣の基本的な生殖要素である。卵胞は卵胞細胞と呼ばれる体細胞の1つまたは複数の層で囲まれている卵母細胞から成っている。卵胞の発達は卵母細胞と濾胞細胞5の間の双方向通信に依存する。卵胞細胞の一次培養、遺伝子発現解析、卵母細胞成熟、体外受精などの異なる研究目的で、卵胞細胞と卵子を卵巣卵胞から分離することが重要です。

従来の分離方法には、鉗子と酵素消化6、7、8、9、10による機械的分離が含まれる。しかし、鉗子による機械的分離は時間がかかり、面倒です。また、分離中に卵母細胞に高い損傷を引き起こす。酵素消化法は操作が簡単で短時間を要しますが、処理時間と酵素濃度を検証する必要があり、単離された卵母細胞の完全性と生存率は理想的ではありません。そこで、引っ張られたガラスの毛管管を用いて、異なる発達段階で両方の区画を分離する簡単な方法を確立しました。

プロトコル

魚の実験で行われる手順はすべて、ノースウェストノーマル大学動物実験倫理委員会の規則に従っています。

1. 準備

  1. 動物
    1. 体長4~6cmの成虫の雌ゼブラフィッシュを使用してください。
      注:私たちは地元の市場からゼブラフィッシュを使用しました。
    2. ゼブラフィッシュは、約28°Cで14時間光と10時間の暗いサイクルで循環水系に保管してください。
    3. 新しく孵化した塩水エビで1日2回魚を養います。
  2. 引っ張られたガラスの毛管
    1. 15cmのガラスキャピラリーを使用し、それを加熱するためにアルコールバーナーに頭を置きます。ガラスキャピラリーの一方の端を手で持ち、もう一方の端を鉗子で保持します。
    2. 5~10秒加熱すると、アルコールバーナーの火の上のガラスが赤く柔らかくなります。ガラスキャピラリーの頭を鉗子で伸ばして、必要な直径でキャピラリーの開口部を作ります。
      注:直径は卵胞径に依存します:簡潔性(PV;直径約0.30mm)、初期のビテロゲン(EV;直径約0.40mm)、中胞原性(MV;直径約0.50mm)、後期強原性(LV;直径約0.60mm)、完全に成長したが未熟な直径(FGは約0.65mm)。
    3. ガラスキャピラリーの開口部を適切な直径まで伸ばし、分離した卵胞のサイズがわずかに小さくなります。卵巣卵胞の大きさよりもはるかに大きな開口部を持つガラス毛細管は分離を行うことはできませんが、はるかに小さいものは分離中に卵胞を壊します。ガラスキャピラリーの延伸を何度か練習します。
      注:加熱時間は、ガラスキャピラリーのサイズに依存します。アルコールバーナーの火の上にガラスの毛細血管を直接伸ばさないでください。それはガラスの毛細管を壊すでしょう。
    4. アンプルカッターでガラスキャピラリーを切り、ガラスキャピラリーを鉗子で割って滑らかな切開を得る。
      注:ガラスの毛細管の鋭い開口部または壊れた開口部は、卵胞を損傷します。
    5. 30 cmのプラスチックチューブを使用して、一方の端にフィルター要素を持つ1 mLピペットチップを挿入し、ピペットの端に引っ張られたガラスの毛細管を挿入し、別の端に200 μLピペットチップを接続します。

2. ゼブラフィッシュ卵母細胞と濾胞細胞の異なる段階での分離

  1. ゼブラフィッシュ卵巣の解剖
    1. スラリーアイスで4/5いっぱいにアイスバケツを満たし、スラリーアイスを浮かべるように十分な魚の水を追加します。2~5分待ち、水温を確認し、温度が2~4°Cであることを確認します。
    2. 魚がギルの動きを止めるまで、少なくとも2〜5分間氷水に魚を入れることによって、成虫の雌を麻酔します。死を確実にするために鋭いはさみを使用して脊髄を切断することによって魚の首を切る。
    3. 魚を鉗子で解剖プレートに置きます。
    4. はさみを解剖して次のように切ります。クロアカから腹部の正中線に沿ったエラに解剖する。クロアカの後ろから切ります。前先端から後側に切ります。体の片側の皮膚と筋肉をそっと取り除きます。内臓を露出させ、鉗子で卵巣全体を取り出す。
    5. すぐに、60%ライボヴィッツのL-15(L-15)培地を含む100mm培養皿に卵巣をそっと入れます。
  2. 卵巣卵胞の分離
    注:我々が採用したステージングシステムは、Selmanらの元の定義に基づいています4.
    1. 前に説明した細かい鉗子のペアを使用して、異なる段階の卵胞を手動で分離する 8.
    2. 卵巣卵胞を次の段階にグループ化: PV、 EV、 MV、 LV および FG ステージ。
  3. 卵巣卵胞からの濾胞細胞と卵母細胞の分離
    1. 卵巣卵胞を異なる段階で、60%L-15培地を含むきれいなペトリ皿に入れます。
    2. ステップ1.2から引っ張られたガラスの毛管を使用して、ガラス毛管2〜3cmに卵胞を吸い込み、それらを吹き飛ばします。
      注:ガラス毛細血管の開口部径が適切な場合、卵胞は一度吸入することによって卵母細胞から分離することができます。
      1. 卵胞細胞層が卵母細胞にしっかりと取り付けられている場合は、2〜3回繰り返して完全な分離を行います。小さな毛細血管を通して卵胞を強制する複数の試みを避け、卵胞を損傷させる。
        注:吸入と吹き出しの過程で、濾胞層が脱落して卵母細胞から分離し、最後に卵胞細胞と裸卵母細胞が分離されます(図1)。
    3. 裸だが無傷の卵母細胞をプールし、さらなるアッセイのために生き残った裸の卵母細胞を収集する。
    4. 濾胞細胞が無傷の卵胞から分離されたかどうかを調べるには、無傷の卵胞を染色し、4',6-ダイアミジノ-2-フェニリンドール(DAPI)で卵母細胞を分離した。
      1. 室温(RT)で4%緩衝パラホルムアルデヒドでサンプルを1時間固定します。PBSで数回洗浄します。
      2. RTで30分間DAPIで汚す。PBSで数回洗浄した。蛍光顕微鏡(例えば、ライカDFC7000 T)での表示および写真。
    5. 完全な分離を確認するには、4%緩衝パラホルムアルデヒドを4%緩衝したパラホルムアルデヒドで4%緩衝液に完全な卵胞と分離し、インティッシュ凍結培地(例えば、ライカ)を-25°Cで埋め込む。
      1. ミクロトームで固定組織を切り、ガラススライドに取り付けます。
      2. PBSのセクションを洗浄し、DAPIで細胞核を可視化します。蛍光顕微鏡で見て写真を撮る。

3. 体外成熟(IVM)と体外受精(IVF)

注: IVF の IVM の手順は、マイナーな変更11、12、13で前述のように従いました

  1. 成体ゼブラフィッシュメスからの卵巣解離の前に、新鮮な成熟培地(+DHP培地)を準備します。新鮮な成熟培地を調製するには、ライボヴィッツのL-15培地pH 9.0の9mLを15 mL円錐形チューブに加えます。17α-20β-ジヒドロキシ-4プレグネン-3-ワン(DHP)(5mg/mL)、dH2Oの490 μL、10%ウシ血清アルブミン(BSA)の500 μLを加えます。
  2. ハンクのソリューションとE3ソリューションを事前に準備してください。Baarsら14で述べたようにハンクスのソリューションを準備します。E3培地を準備する:5 mM NaCl、0.17 mM KCl、0.33 mM CaCl 2、0.33 mM MgSO4、および1-5%メチレンブルー。
  3. ステップ2のようにゼブラフィッシュ卵巣の解剖および卵巣卵胞の単離を行う。
  4. 完全に成長した段階の卵胞を収集し、未熟な卵母細胞として使用します。各成体雌ゼブラフィッシュについて、少なくとも150〜200完全に成長したステージ卵胞を単離することができる。IVM の無傷で健康な卵胞を選択します。
  5. 完全成長したステージ卵胞を+DHP培地に12ウェルプレートでインキュベートし、卵母細胞がそのまま残っていることを定期的に確認します。パスツールピペットでライジング卵母細胞を取り除く。
    注:卵母細胞の成熟の間、卵母細胞は徐々に半透明になります。卵母細胞の大部分は、2時間のDHPの治療後に半透明になる。これは透過した光学系の解剖顕微鏡の下で観察することができる。
  6. ステップ2.3で説明したように、各成熟卵母細胞から最も外側の濾胞細胞を除去する。
  7. 数滴の培養培地でペトリ皿にヌード卵母細胞を移し、受精に進みます。
  8. ハンクスの溶液の500 μLで少なくとも3人の男性から解剖された精巣を使用して、新鮮な精子溶液を準備します。精子溶液を氷の上に置き、受精の効力を最大2〜3時間保つことができます。
  9. ペトリ皿に脱裸&成熟卵母細胞に精子溶液の100 μLを追加します。卵の間に精子溶液をそっと加え、ピペットチップを使って精子と卵を一緒に渦巻く。
  10. すぐに卵子を活性化するためにE3培地溶液の1 mLを追加し、再びピペット先端を使用して卵と精子を穏やかに渦巻きます。
  11. 約1分の受精後(mpf)後、プレートをE3培地溶液であふれさせます。完全な絨毛の拡大は10-15 mpfの内で観察することができる。
  12. 35〜45 mpfの間で、2細胞段階に対称的な切断を受けている、したがって受精している胚を選択する。細胞切断を受けていない胚を除去する。
  13. 28°Cのペトリ皿で胚を発生させ、10cmプレートあたり80個の胚の制限を持ちます。胚の発生を見て、写真を撮る。

結果

この方法は、ゼブラフィッシュの卵巣卵胞の発達の異なる段階で濾胞細胞と卵母細胞を分離するために使用することができます。 図1 は、毛細管ガラス管を用いた卵巣卵胞からのゼブラフィッシュ卵母細胞および濾胞細胞の分離を示す(図1)。濾胞細胞が無傷の卵胞から分離されたかどうかを調べるには、PV段階からFG段階までの異なる段階の卵胞か...

ディスカッション

ここでは、ゼブラフィッシュ卵巣卵胞から濾胞細胞と卵母細胞を簡単かつ迅速に分離するための新しい方法を説明する。この方法は、従来法に比していくつかの利点を有する。これらの中でも、単一の外部操作のみが必要となるため、高効率と有効性で大幅に増加した分離の容易さがあります。この点は、顕微鏡解剖学が苦手な研究者に対する適用性を高める。私たちの経験によると、ガラ?...

開示事項

著者らは開示するものは何もない。

謝辞

この研究は中国国立自然科学財団[32060170、31601205および31560334]、中国奨学金協議会と淡水生態学とバイオテクノロジーの国家主要研究所の基金によって支援された客員研究員プロジェクト[2020FB05]によって支援されました。

資料

NameCompanyCatalog NumberComments
17α,20β-DHPCayman16146-5 (5 mg)
24-well plateCorning3524
Ampoule cutterAS ONE5-124-22 1 bag (100 pieces)
Anhydrous Na2HPO4Kaixin Chemical500 g
Brine shrimpHongjie250 g
CaCl2Beichen Fangzheng500 g
Culture dishBiosharpBS-90-D (10PCS/PK)
DAPISolarbioS2110 (25mL)
Dissecting MicroscopeZEISSStemi 305
Dissection forcepVETUSHRC30
Dissection scissorKefu160 mm 
Fluorescence Stereomicroscope LeicaM205C
Glass capillaryIWAKIIK-PAS-5P (200 pcs/PACK)
Hoechst 33342SolarbioC0031 (1 mg)
KClBeichen Fangzheng500 g
KH2PO4Kaixin Chemical500 g
Leibovitz’s L-15 mediumGibco41300-039 (10×1L)
MgSO4•7H2OBeichen Fangzheng500 g
Micropipette tipsAxygenMCT-150-C
NaClBeichen Fangzheng500 g
NaHCO3Beichen Fangzheng500 g
Penicilia-streptomyciaGibco#15140122 (100 mL)
StereomicroscopeZEISSDiscover.v20

参考文献

  1. Clelland, E., Peng, C. Endocrine/paracrine control of zebrafish development. Molecular and Cellular Endocrinology. 312, 42-52 (2009).
  2. Ge, W. Intrafollicular paracrine communication in the zebrafish ovary: the state of the art of an emerging model for the study of vertebrate folliculogenesis. Molecular and Cellular Endocrinology. 237, 1-10 (2005).
  3. Li, J., Ge, W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Molecular and Cellular Endocrinology. 507, 1-19 (2020).
  4. Selman, K., Wallace, R. A., Sarka, A., Qi, X. Stages of oocyte development in the zebrafish, Brachydanio rerio. Journal of Morphology. 218, 203-224 (1993).
  5. Matzuk, M. M., Burns, K. H., Viveiros, M. M., Eppig, J. J. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 296, 2178-2180 (2002).
  6. Liu, L., Ge, W. Growth differentiation factor 9 and its spatiotemporal expression and regulation in the zebrafish ovary. Biology of Reproduction. 76, 294-302 (2007).
  7. Zhou, R., Tsang, A. H., Lau, S. W., Ge, W. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors in the zebrafish ovary: evidence for potentially dual roles of PACAP in controlling final oocyte maturation. Biology of Reproduction. 85, 615-625 (2011).
  8. Li, J., Liu, Z., Wang, D., Cheng, C. H. K. Insulin-like growth factor 3 is involved in oocyte maturation in zebrafish. Biology of Reproduction. 84, 476-486 (2011).
  9. Pang, Y., Thomas, P. Role of G protein-coupled estrogen receptor 1, GPER, in inhibition of oocyte maturation by endogenous estrogens in zebrafish. Developmental Biology. 342, 194-206 (2010).
  10. Peyton, C., Thomas, P. Involvement of epidermal growth factor receptor signaling in estrogen inhibition of oocyte maturation mediated through the G protein-coupled estrogen receptor (Gper) in zebrafish (Danio rerio). Biology of Reproduction. 85, 42-50 (2011).
  11. Welch, E. L., Eno, C. C., Nair, S., Lindeman, R. E., F, P. Functional manipulation of maternal gene products using in vitro oocyte maturation in zebrafish. Journal of Visualized Experiments. (122), e55213 (2017).
  12. Nair, S., Lindeman, R. E., Pelegri, F. In vitro oocyte culture-based manipulation of zebrafish maternal genes. Developmental Dynamics. 242, 44-52 (2013).
  13. Seki, S., et al. Development of a reliable in vitro maturation system for zebrafish oocytes. Reproduction. 135, 285-292 (2008).
  14. Baars, D. L., Takle, K. A., Heier, J., Pelegri, F. Ploidy manipulation of zebrafish embryos with heat shock 2 treatment. Journal of Visualized Experiments. , e54492 (2016).
  15. Xie, S. L., et al. A novel technique based on in vitro oocyte injection to improve CRISPR/Cas9 gene editing in zebrafish. Scientific Reports. 6, 34555 (2016).
  16. Li, J., Bai, L., Liu, Z., Wang, W. Dual roles of PDE9a in meiotic maturation of zebrafish oocytes. Biochemical and Biophysical Research Communications. , (2020).

転載および許可

このJoVE論文のテキスト又は図を再利用するための許可を申請します

許可を申請

さらに記事を探す

170

This article has been published

Video Coming Soon

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved