로그인

Rostock University Medical Center

11 ARTICLES PUBLISHED IN JoVE

image

Biology

Intravital Microscopy of the Microcirculation in the Mouse Cremaster Muscle for the Analysis of Peripheral Stem Cell Migration
Peter Donndorf 1, Marion Ludwig 1, Fabian Wildschütz 1, Dritan Useini 1, Alexander Kaminski 1, Brigitte Vollmar 2, Gustav Steinhoff 1
1Reference and Translation Centre for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University Rostock, 2Institute for Experimental Surgery, University of Rostock

Intravital microscopy of the mouse M. cremaster microcirculation offers a unique and well-standardized in vivo model for the analysis of peripheral bone marrow stem cell migration.

image

Developmental Biology

Generation of Murine Cardiac Pacemaker Cell Aggregates Based on ES-Cell-Programming in Combination with Myh6-Promoter-Selection
Christian Rimmbach 1, Julia J. Jung 1, Robert David 1
1Reference and Translation Center for Cardiac Stem Cell Therapy, University of Rostock

This protocol describes how to produce functional sinus nodal tissue from murine pluripotent stem cells (PSC). T-Box3 (TBX3) overexpression plus cardiac Myosin-heavy-chain (Myh6) promoter antibiotic selection leads to highly pure pacemaker cell aggregates. These “Induced-sinoatrial-bodies” (“iSABs”) contain over 80% pacemaker cells, show highly increased beating rates and are able to pace myocardium ex vivo.

image

Medicine

Intravital Microscopy and Thrombus Induction in the Earlobe of a Hairless Mouse
Daniel Strüder *1, Eberhard Grambow *2, Ernst Klar 2, Robert Mlynski 1, Brigitte Vollmar 3
1Department of Otorhinolaryngology, Head and Neck Surgery "Otto Koerner", Rostock University Medical Center, 2Department of General, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, 3Institute for Experimental Surgery, Rostock University Medical Center

The ear model of the hairless SKH1-Hrhr mouse enables intravital fluorescence microscopy of microcirculation and phototoxic thrombus induction without prior surgical preparation in the examined microvascular bed. Therefore, the ear of the hairless mouse is an excellent in vivo model to study the complex interactions during microvascular thrombus formation, thrombus evolution, and thrombolysis.

image

Medicine

Preparation and In Vitro Characterization of Magnetized miR-modified Endothelial Cells
Natalia Voronina 1, Heiko Lemcke 1, Frank Wiekhorst 2, Jens-Peter Kühn 3, Markus Frank 4, Gustav Steinhoff 1, Robert David 1
1Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, 2Physikalisch-Technische Bundesanstalt, 3Department of Radiology and Neuroradiology, Ernst-Moritz-Arndt-University Greifswald, 4Electron Microscopy Center, University of Rostock

This manuscript describes the efficient, non-viral delivery of miR to endothelial cells by a PEI/MNP vector and their magnetization. Thus, in addition to genetic modification, this approach allows for magnetic cell guidance and MRI detectability. The technique can be used to improve the characteristics of therapeutic cell products.

image

Biology

Analysis of the Gap Junction-dependent Transfer of miRNA with 3D-FRAP Microscopy
Heiko Lemcke 1,2,3, Natalia Voronina 1,2,3, Gustav Steinhoff 1,2,3, Robert David 1,2,3
1Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), 2Department of Cardiac Surgery, University of Rostock, 3Department of Life, Light and Matter of the Interdisciplinary Faculty, University of Rostock

Here, we describe the application of three-dimensional fluorescence recovery after photobleaching (3D-FRAP) for the analysis of the gap junction-dependent shuttling of miRNA. In contrast to commonly applied methods, 3D-FRAP allows for the quantification of the intercellular transfer of small RNAs in real time, with high spatio-temporal resolution.

image

Bioengineering

Protocol for MicroRNA Transfer into Adult Bone Marrow-derived Hematopoietic Stem Cells to Enable Cell Engineering Combined with Magnetic Targeting
Frauke Hausburg *1,2, Paula Müller *1,2, Natalia Voronina *1, Gustav Steinhoff 1,2, Robert David 1,2
1Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, 2Department Life, Light and Matter of the Interdisciplinary Faculty, Rostock University

This protocol illustrates a safe and efficient procedure to modify CD133+ hematopoietic stem cells. The presented non-viral, magnetic polyplex-based approach may provide a basis for the optimization of therapeutic stem cell effects as well as for monitoring the administered cell product via magnetic resonance imaging.

image

Genetics

Isolation, Characterization and MicroRNA-based Genetic Modification of Human Dental Follicle Stem Cells
Paula Müller *1,2, Katharina Ekat *3, Anne Brosemann 3, Anne Köntges 3, Robert David 1,2, Hermann Lang 3
1Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, Rostock University Medical Center, 2Department Life, Light and Matter of the Interdisciplinary Faculty at Rostock University, 3Department of Operative Dentistry and Periodontology, Rostock University Medical Center

This protocol describes the transient genetic engineering of dental stem cells extracted from the human dental follicle. The applied non-viral modification strategy may become a basis for the improvement of therapeutic stem cell products.

image

Medicine

Continuous Blood Sampling in Small Animal Positron Emission Tomography/Computed Tomography Enables the Measurement of the Arterial Input Function
Teresa Mann 1, Jens Kurth 2, Anne Möller 3, Joanna Förster 3, Brigitte Vollmar 4, Bernd J. Krause 2, Andreas Wree 1, Jan Stenzel *3, Tobias Lindner *3
1Institute of Anatomy, Rostock University Medical Center, 2Department of Nuclear Medicine, Rostock University Medical Center, 3Core Facility Multimodal Small Animal Imaging, Rostock University Medical Center, 4Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center

Here a protocol for continuous blood sampling during PET/CT imaging of rats to measure the arterial input function (AIF) is described. The catheterization, the calibration and setup of the system and the data analysis of the blood radioactivity are demonstrated. The generated data provide input parameters for subsequent bio-kinetic modeling.

image

Medicine

Intrathecal Application of a Fluorescent Dye for the Identification of Cerebrospinal Fluid Leaks in Cochlear Malformation
Nora M. Weiss 1, Ingo Andus 2, Armin Schneider 3, Sönke Langner 4, Stefanie Schröder 1, Sebastian P. Schraven 1, Robert Mlynski 1
1Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Rostock, 2Rostock University, 3ARRI Medical GmbH, 4Department of Radiology and Institute of Diagnostic and Interventional Radiology, University Medical Center Rostock

Intrathecally applied fluorescein is used to achieve intraoperative visualization of CSF leaks. This protocol describes a lumbar puncture, the application of 5% fluorescein, and intraoperative visualization using a fully digital microscope.

image

Biology

Analyzing the α-Actinin Network in Human iPSC-Derived Cardiomyocytes Using Single Molecule Localization Microscopy
Lisa Johann 1,2, Oleksandra Chabanovska 1,2, Cajetan Immanuel Lang 3, Robert David 1,2, Heiko Lemcke 1,2
1Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, 2Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, 3Department of Cardiology, Rostock University Medical Center

The formation of a proper sarcomere network is important for the maturation of iPSC-derived cardiomyocytes. We present a super resolution-based approach that allows for the quantitative evaluation of the structural maturation of stem cell derived cardiomyocytes, to improve culture conditions promoting cardiac development.

image

Medicine

Real-Time Assessment of Spinal Cord Microperfusion in a Porcine Model of Ischemia/Reperfusion
Christoph R. Behem 1, Till Friedheim 1, Sabine H. Wipper 2, Hans O. Pinnschmidt 3, Michael F. Graessler 1, Catharina Gaeth 4, Hannes Holthusen 1, Adina Rapp 5, Timo Suntrop 1, Josephina Haunschild 6, Christian D. Etz 6, Constantin J. C. Trepte 1
1Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, 2University Department for Vascular Surgery and Department of Operative Medicine, Medical University of Innsbruck, 3Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 4Department of Vascular Medicine, University Heart and Vascular Center Hamburg (UHZ), 5Department of Cardiology, Rostock University Medical Center, 6University Department for Cardiac Surgery, Heart Center Leipzig

Spinal cord microcirculation plays a pivotal role in spinal cord injury. Most methods do not allow real-time assessment of spinal cord microcirculation, which is essential for the development of microcirculation-targeted therapies. Here, we propose a protocol using Laser-Doppler-Flow Needle probes in a large animal model of ischemia/reperfusion.

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유