Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol details the glycomics-guided glycoproteomics method, an integrated omics technology that offers comprehensive insights into the heterogeneous glycoproteome in complex tumor microenvironments required to better understand the glycobiology of cancers.

Abstract

Glycosylation is a common and structurally diverse protein modification that impacts a wide range of tumorigenic processes. Mass spectrometry-driven glycomics and glycoproteomics have emerged as powerful approaches to analyze liberated glycans and intact glycopeptides, respectively, offering a deeper understanding of the heterogeneous glycoproteome in the tumor microenvironment (TME). This protocol details the glycomics-guided glycoproteomics method, an integrated omics technology, which firstly employs porous graphitized carbon-LC-MS/MS-based glycomics to elucidate the glycan structures and their quantitative distribution in the glycome of tumor tissues, cell populations, or bodily fluids being investigated. This allows for a comparative glycomics analysis to identify altered glycosylation across patient groups, disease stages, or conditions, and, importantly, serves to enhance the downstream glycoproteomics analysis of the same sample(s) by creating a library of known glycan structures, thus reducing the data search time and the glycoprotein misidentification rate. Focusing on N-glycoproteome profiling, the sample preparation steps for the glycomics-guided glycoproteomics method are detailed in this protocol, and key aspects of the data collection and analysis are discussed. The glycomics-guided glycoproteomics method provides quantitative information on the glycoproteins present in the TME and their glycosylation sites, site occupancy, and site-specific glycan structures. Representative results are presented from formalin-fixed paraffin-embedded tumor tissues from colorectal cancer patients, demonstrating that the method is sensitive and compatible with tissue sections commonly found in biobanks. Glycomics-guided glycoproteomics, therefore, offers a comprehensive view into the heterogeneity and dynamics of the glycoproteome in complex TMEs, generating robust biochemical data required to better understand the glycobiology of cancers.

Introduction

Protein glycosylation is a prevalent and complex type of co- and post-translational modification of proteins produced by species across the phylogenetic tree of life1,2,3. The protein-linked glycans are known to impact a wide span of biological processes important for human health, including mediation and regulation of cellular interactions and communication events4,5. Aberrant protein glycosylation has been thought to be a cause of malignant transformation, tumor progression, and spread6,....

Protocol

The study was approved by the Human Research Ethics Committee (Medical Sciences) at Macquarie University, Sydney, Australia (Protocol 5201800073).

NOTE: The glycomics-guided glycoproteomics method can be applied to a diverse set of biological samples ranging from low to extreme glycoprotein complexity. For label-free glycoproteomics approaches (in which sample pooling is not performed), approximately 100-200 µg total protein from complex mixtures is required as starting material to ensure high glycoproteome coverage after enrichment for glycopeptides that may only constitute 1%-10% of the peptide population. Due to space constrain....

Representative Results

Representative results of the glycomics-guided glycoproteomics method applied to a FFPE tissue slide from a patient suffering from CRC in stage II are provided in this section.

To achieve sufficient protein starting material for the protocol, protein extracts from two slides (z stacks) were combined from the same FFPE tissue block following a published protocol and a TMT labeling approach was applied to increase the sensitivity of the glycoproteomics experiment (see optional steps below)

Discussion

Critical steps in the protocol
In this protocol paper, we have outlined step-by-step the glycomics-guided glycoproteomics method, which provides a comprehensive view of the glycoproteome's heterogeneity and dynamics in the complex TME.

A critical step in the protocol is to ensure complete proteolysis without over-digesting the protein mixture. Non-specific cleavages of proteins inherently increase the peptide search space, leading to longer search times and a higher .......

Disclosures

The authors declare no conflict of interest.

Acknowledgements

THC is supported by an International Research Training Program Scholarship funded by the Australian Government. NB is supported by International Macquarie University Research Excellence Scholarships funded by Macquarie University. AC is supported by a Research Training Program scholarship funded by the Australian Government. RK was supported by the Cancer Institute of New South Wales (ECF181259). MTA is the recipient of an Australian Research Council Future Fellowship (FT210100455).

....

Materials

NameCompanyCatalog NumberComments
Chemicals
Ammonium acetate Sigma AldrichA1542Alternatives available
Ammonium bicarbonate, purity ≥99.0%Sigma AldrichA6141Alternatives available
Anhydrous acetonitrile (ACN), LC-MS gradeSigma Aldrich34851Alternatives available
Bovine fetuinSigma AldrichF3004Alternatives available
Dithiothreitol (DTT)Sigma AldrichD0632Alternatives available
EthanolSigma AldrichE7023Alternatives available
Formic acid, LC-MS gradeSigma Aldrich00940Alternatives available
Glacial acetic acidSigma AldrichA6283Alternatives available
Iodoacetamide (IAA)Sigma AldrichI1149Alternatives available
MethanolSigma AldrichM1775Alternatives available
Peptide-N-glycosidase F (PNGase F)PromegaV4831Elizabethkingia miricola PNGase F (10 U/μL) recombinantly expressed in Escherichia coli 
Polyvinylpyrrolidone 40 (PVP)Sigma AldrichPVP40Alternatives available
Potassium hydroxide (KOH)Sigma Aldrich484016Alternatives available
Sequencing-grade porcine trypsin PromegaV5113Alternatives available
Sodium borohydride (NaBH4)Sigma Aldrich213462Alternatives available
Triethylammonium bicarbonate (TEAB), LC-MS gradeSigma AldrichT7408Alternatives available
Trifluoroacetic acid (TFA), LC-MS gradeSigma AldrichT6508Alternatives available
Tools/Materials
C18 disksEmpore66883-U
C8 disksEmpore66882-U
Flat-bottom polypropylene 96-well plate Corning3364
Immobilon-PSQ polyvinylidene difluoride (PVDF) membraneMilliporeIPVH20200Pore size: 0.45 μm 
MicrocentrifugeEppendorf5452000069Alternatives available
Microcentrifuge adapters The Nest Group, Inc., MASS18VMiniSpin Column Collar, comes with Microspin Columns
Oligo R3 resinThermo1133903Particle size 30 μm
ParafilmParafilm MPM996
Protein LoBind tubes 1.5 mLEppendorf0030108450
Protein LoBind tubes 2.0 mLEppendorf0030108442
Safe-lock tubes 1.5 mLEppendorf0030120086
Safe-lock tubes 2.0 mLEppendorf0030120094
ShakerEppendorf5382000066Alternatives available
Single hole puncherSwingline74005
SpeedVac concentratorMartin ChristRVC 2-25 CDplusAlternatives available
Supelclean ENVI-Carb SPE resinSupelco57088Particle size 120-400 mesh. Resin can be manually extracted from cartridges, and can be stored long-term in 50% (v/v) methanol in MilliQ water
Syringe 5 mLSigma AldrichZ116866Alternatives available
Temperature-controlled incubatorThermolineE7.30Alternatives available
Ultrasonic bathUnisonicsFXPAlternatives available
ZIC-HILIC resinMerck150455Particle/pore size, 5 μm/200 Å. Resin can be manually extracted from LC column, and can be stored long-term in 50% (v/v) methanol in MilliQ water
ZipTip C18 solid-phase extraction (SPE) micro-columns MilliporeZTC18S096Alternatively, home-made C18-SPE micro-columns can replace commercial product
LC-MS/MS Analysis
1260 Infinity Capillary HPLC system AgilentAlternatives available
Analytical LC column pre-packed with ReproSil-Pur C18 AQ resinDr Maisch, Ammerbuch-Entringen, Germanyr13.aq.s2570Particle/pore size: 3 μm/120 Å, length/inner diameter: 25 cm/75 μm. Commercial C18 nano-LC columns also available/ 
Dionex UltiMate 3000 RSLCnano LC System ThermoAlternatives available
HyperCarb KAPPA PGC capillary LC column ThermoDiscontinuedParticle/pore size, 3 μm/250 Å; column length, 30 mm; inner diameter, 0.180 mm. Larger geometries of the HyperCarb PGC-LC columns, producing similar quality data are commercially available (e.g., Thermo #35003-031030). SupelTMCarb LC column from Merck with a particle/pore size, 2.7 μm/200 and with different column lengths and internal diameter are also available (e.g., Merck #59994-U). 
LCMS-grade acetonitrileLiChrosolv100029Alternatives available
Linear trap quadrupole (LTQ) Velos Pro ion trap mass spectrometer (glycomics) ThermoAlternatives available
Orbitrap Fusion Lumos Tribrid Mass Spectrometer (glycoproteomics)ThermoOther high-resolution MS systems with or without ETD (only required for O-glycoproteomics) are also available (e.g., Q-Exactive HF-X Hybrid Quadrupole-Orbitrap, Thermo, TIMS-ToF-MS, Bruker or similar high performance mass spectrometers from other vendors)
Total Recovery Clear Glass screw vials 0.9 mLThermoTHC11093563Alternatives available
Total Recovery Clear Glass screw vials matching capsThermoTHC09150869Alternatives available
Trap LC column packed in-house with ReproSil-Pur C18 AQ resin Dr Maisch, Ammerbuch-Entringen, Germanyr15.aq.s0202Particle/pore size: 5 μm/120 Å, length/inner diameter: 2 cm/100 μm. Commercial C18 trap LC columns also available. 
Software
ByonicProtein Metrics Incv2.6.46 or higherCommercial glycopeptide and PTM search engine, accepting LC-MS/MS raw data from most MS vendors
ByosProtein Metrics Incv3.9-7 or higherCommercial software for manual inspection of glycopeptide candidates and the automatic annotation of glycan MS/MS spectra
GlycoModExpasyOpen access software, assisting the annotation of glycomics data (https://web.expasy.org/glycomod/)
GlycoWorkBenchEUROCarbDBv2.1Open access software, assisting the annotation of glycomics data and the drawing of glycan cartoons
RawMeatVAST Scientificv2.1Open access software, extracting m/z of glycan precursor ions from raw spectral data
SkylineBrendan X. MacLeanv21.2 or higherOpen access software for relative quantitation of glycans
XcaliburThermov2.2 or higherFor browsing raw LC-MS/MS data

References

  1. Gagneux, P., Panin, V., Hennet, T., Aebi, M., Varki, A. . Essentials of glycobiology. , 265-278 (2022).
  2. Tjondro, H. C., Loke, I., Chatterjee, S., Thaysen-Andersen, M. Human protein paucimannosylation: Cues from the eukaryotic kingdoms. Biol Rev Camb Philos....

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Cancer Research

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved