Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
An adhesion frequency assay for measuring receptor-ligand interaction kinetics when both molecules are anchored on the surfaces of the interacting cells is described. This mechanically-based assay is exemplified using a micropipette-pressurized human red blood cell as adhesion sensor and integrin αLβ2 and intercellular adhesion molecule-1 as interacting receptors and ligands.
The micropipette adhesion assay was developed in 1998 to measure two-dimensional (2D) receptor-ligand binding kinetics1. The assay uses a human red blood cell (RBC) as adhesion sensor and presenting cell for one of the interacting molecules. It employs micromanipulation to bring the RBC into contact with another cell that expresses the other interacting molecule with precisely controlled area and time to enable bond formation. The adhesion event is detected as RBC elongation upon pulling the two cells apart. By controlling the density of the ligands immobilized on the RBC surface, the probability of adhesion is kept in mid-range between 0 and 1. The adhesion probability is estimated from the frequency of adhesion events in a sequence of repeated contact cycles between the two cells for a given contact time. Varying the contact time generates a binding curve. Fitting a probabilistic model for receptor-ligand reaction kinetics1 to the binding curve returns the 2D affinity and off-rate.
The assay has been validated using interactions of Fcγ receptors with IgG Fc1-6, selectins with glycoconjugate ligands6-9, integrins with ligands10-13, homotypical cadherin binding14, T cell receptor and coreceptor with peptide-major histocompatibility complexes15-19.
The method has been used to quantify regulations of 2D kinetics by biophysical factors, such as the membrane microtopology5, membrane anchor2, molecular orientation and length6, carrier stiffness9, curvature20, and impingement force20, as well as biochemical factors, such as modulators of the cytoskeleton and membrane microenvironment where the interacting molecules reside and the surface organization of these molecules15,17,19.
The method has also been used to study the concurrent binding of dual receptor-ligand species3,4, and trimolecular interactions19 using a modified model21.
The major advantage of the method is that it allows study of receptors in their native membrane environment. The results could be very different from those obtained using purified receptors17. It also allows study of the receptor-ligand interactions in a sub-second timescale with temporal resolution well beyond the typical biochemical methods.
To illustrate the micropipette adhesion frequency method, we show kinetics measurement of intercellular adhesion molecule 1 (ICAM-1) functionalized on RBCs binding to integrin αLβ2 on neutrophils with dimeric E-selectin in the solution to activate αLβ2.
1. RBCs isolation from the whole blood
Note: Step 1.2 should be performed by a trained medical professional such as a nurse, with an Institutional Review Board approved protocol.
2. RBCs biotinylation
3. Functionalizing the biotin-linked ligands* on RBCs
*If your protein has no biotin link you can use one of the commercially available kits for protein biotinylation (for example, Thermo Scientific # 21955 EZ-Link Micro NHS-PEG4-Biotinylation Kit) or use biotinylated capturing antibodies as an intermediate step as shown in the video.
4. Quantification of receptor and ligand densities
5. Preparation for micropipette and cell chamber
6. Micropipette adhesion frequency assay
7. Data analysis
8. Representative Results:
Figure 1 Determination of integrin αLβ2 site density on neutrophils. Neutrophils were first incubated with 1μg/ml of E-selectin-Ig for 10min to match the experimental condition used in Figures 3,4 or without E-selectin-Ig, and then with saturating concentrations (10μg/ml) of PE-conjugated anti-human CD11a mAb (Clone HI111, see Table of specific reagents and equipment) or irrelevant mouse IgG1 for control, washed, and analyzed immediately. Samples were read on BD LSR flow cytometer with standard QuantiBRITE PE calibration beads. Panel A shows fluorescence histograms of calibration beads (pink) together with those of E-selectin-Ig treated (blue color) or untreated cells (green color). Specific CD11a mAb staining is shown in solid curves and irrelevant isotype-matched control antibody staining is shown in dotted curves. Cells treated with E-selectin-Ig (presence in all washing steps and in FACS buffer) did not affect the CD11a density as seen from the comparison with untreated cells. Panel B shows the process of density quantification. Log10 was calculated for the mean fluorescent intensity (FI) of each peak value of four calibration bead histograms from Panel A (pink circles) and for the lot-specific PE molecules per bead (from the manufacturer). A linear regression of Log10 PE molecules per bead against Log10 fluorescence was plotted. For E-selectin treated cells the Log10 FI (y) values equal 3.99 (blue solid circle) and 2.23 (blue open circle) for specific mAb and control antibody, respectivly. We solved the linear equation for x (values are plotted as green and blue circles on Panel B). x = Log10 PE/cell and, as PE:mAb ratio was 1:1, the total number of αLβ2 on neutrophils was calculated as 9587. Surface density was calculated to be 43 molecules/μm2, using 8.4μm as the neutrophil diameter22. Density of ICAM-1 was similarly measured by flow cytometery using PE-anti-human CD54 mAb, which equaled 65 mol/μm2.
Figure 2 Micropipette system schematics. Our micropipette system was assembled in house and consists of three subsystems: an imaging subsystem to allow one to observe, record and analyze movements of the micropipette-aspirated cell; a micromanipulation subsystem to enable one to select the cells from the cell chamber, and a pressure subsystem to allow one to aspirate the cells into micropipettes. The central piece of the imaging subsystem is inverted microscope (Olympus IMT-2 IMT2) with a 100x oil immersion 1.25 N.A. objective. The image is sent to a video cassette recorder through a charge couple device (CCD) camera. A video timer is coupled to the system to keep track of time. Each micropipette can be manipulated by a mechanical drive mounted on the microscope and finely positioned with a three-axis hydraulic micromanipulator. Mechanical manipulators from Newport could be used as well. One of the micropipette holders is mounted on a piezoelectric translator, the driver of which is controlled by a computer LabView code (available upon request) and the signal translates through a DAQ board via a voltage amplifier (homemade) to the piezo actuator. This allows one to move the pipette precisely and repeatably in an adhesion test cycle. The pressure regulation subsystem is used to control suction during the experiment. A hydraulic line connects the micropipette holder to a fluid reservoir. A fine mechanical positioner allows the height of the reservoir to be precisely manipulated.
Micropipettes are generated using KIMAX melting point borosilicate glass capillary tubes (with outside diameter of 1.0±0.07 mm and an inside diameter of 0.7±0.07 mm. First, the micropipettes from capillary tubes are pulled using PN-30 Narishige' Magnetic Glass Microelectrode Horizontal Puller (Sutter Instruments Micropipette Puller is another puller option). Second, Microforge system (built in house) is used to cut the micropipettes to desired size opening. Commercial models of Microforge systems are available as well.
To avoid vibration of the micropipettes during the experiment, the microscope, along with the micromanipulators, is placed on an air suspension table.
Figure 3 Running adhesion frequency Fi for specific (A) and nonspecific (B) binding at 1s (red) and 10s (blue) contact times measured from repeated adhesion test cycles between RBCs coated with ICAM-1 (A) or hIgG (B) with human neutrophils expressing integrin αLβ2. Fi = (X1 + X2 +…+ Xi)/i (1 ≤i ≤ n), where i is the test cycle index, Xi equals "1" (adhesion) or "0" (no adhesion). Fn (n=50) was used as the best estimate for adhesion probability.
Figure 4 Kinetics of ICAM-1 binding to neutrophil integrin αLβ2 (). Adhesion probability measured as shown in Figure 3 for three cell pairs at each contact time is averaged and plotted versus contact time. The chamber medium was HBSS with 1mM each of Ca2+ and Mg2+ plus 1μg/ml of dimeric E-selectin-Ig to upregulate αLβ2 binding. To capture ICAM-1-Ig on RBCs, an intermediate step was added to incubate RBCs with 10μg/ml capture antibody (biotinylated goat-anti-human Fc antibody, eBioscience) after the streptavidin incubation step. To control for nonspecific binding two different conditions were used: 1) RBCs coated with the anti-human-Fc capture antibody and incubated with human IgG instead of ICAM-1-Ig (O) and 2) neutrophils binding to RBCs not coated with the capture antibody (Δ). 10μg/ml human IgG was added to the medium to minimize binding of E-selectin-Ig in solution to the capture antibody on the RBC surface. Nonspecific binding recorded as human IgG control curve was used to obtain a specific adhesion probability curve (
) using Eq. 2. Fitting specific adhesion probability curve with Eq. 1 (solid line) returned effective binding affinity AcKa = 1.4•10-4 μm4 and koff = 0.3 s-1.
Reagent | MW (g/mol) | Concentration (mM) | Amount (g) |
---|---|---|---|
Adenine | 135.13 | 2 | 0.27 |
D-glucose (dextrose) | 180.16 | 110 | 19.82 |
D-Mannitol | 182.17 | 55 | 10.02 |
Sodium Chloride (NaCl) | 58.44 | 50 | 2.92 |
Sodium Phosphate, Dibasic (Na HPO ) | 141.95 | 20 | 2.84 |
L-glutamine | 146.15 | 10 | 1.46 |
Table 1. EAS-45 buffer preparation (1L).
25 mg biotin-XHS in 550 μl of DMF | 0.1M biotin solution |
1:10 dilution of 0.1 biotin w/DMF | 0.01M biotin solution |
1:100 dilution of 0.1 biotin w/ DMF | 0.001M biotin solution |
Table 2. Preparation of the biotin solution.
biotin final concentration (μM) | 4 | 10 | 20 | 50 | 100 | 160 |
---|---|---|---|---|---|---|
RBCs pellet stock (μl) | 10 | 10 | 10 | 10 | 10 | 10 |
1x PBS (μl) | 179.2 | 178 | 176 | 179 | 178 | 176.8 |
0.1M borate buffer (μl) | 10 | 10 | 10 | 10 | 10 | 10 |
0.01M biotin solution (μl) | 1 | 2 | 3.2 | |||
0.001M biotin solution (μl) | 0.8 | 2 | 4 |
Table 3. Biotinylation of RBCs.
Access restricted. Please log in or start a trial to view this content.
To successfully use the micropipette adhesion frequency assay one should consider several critical steps. First, make sure to record the specific interaction for the receptor-ligand system of interest. Nonspecific control measurements (cf. Fig. 3, 4) ensure the specificity. Ideally, nonspecific adhesion probabilities should be below 0.05 for all contact time durations and to have a significant difference between the specific and nonspecific adhesion probabilities for each time point. Different methods could be used to co...
Access restricted. Please log in or start a trial to view this content.
No conflicts of interest declared.
This study was supported by NIH grants R01HL091020, R01HL093723, R01AI077343, and R01GM096187.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
10x PBS | BioWhittaker | 17-517Q | Dilute to 1x with deionized water prior to use |
Vacutainer EDTA | BD Biosciences | 366643 | RBCs isolation |
10ML PK100 | |||
Histopaque 1077 | Sigma-Aldrich | 10771 | RBCs isolation |
Adenine | Sigma-Aldrich | A2786 | EAS-45 preparation |
D-glucose (dextrose) | Sigma-Aldrich | G7528 | EAS-45 preparation |
D-Mannitol | Sigma-Aldrich | 6360 | EAS-45 preparation |
Sodium Chloride (NaCl) | Sigma-Aldrich | S7653 | EAS-45 preparation |
Sodium Phosphate, Dibasic (Na₂HPO₄) | Fisher Scientific | S374 | EAS-45 preparation |
L-glutamine | Sigma-Aldrich | G5763 | EAS-45 preparation |
Biotin-X-NHS | Calbiochem | 203188 | RBCs biotinylation |
Dimethylformamide (DMF) | Thermo Fisher Scientific, Inc. | 20673 | RBCs biotinylation |
Borate Buffer (0.1M) | Electron Microscopy Sciences | 11455-90 | RBCs biotinylation |
Streptavidin | Thermo Fisher Scientific, Inc. | 21125 | Ligand functionalizing |
BSA | Sigma-Aldrich | A0336 | Ligand functionalizing |
Quantibrite PE Beads | BD Biosciences | 340495 | Density quantification |
Flow cytometer | BD Biosciences | BD LSR II | Density quantification |
Capillary Tube 0.7-1.0mm x 30" | Kimble Chase | 46485-1 | Micropipette pulling |
Mineral Oil | Fisher Scientific | BP2629-1 | Chamber assembly |
Microscope Cover Glass | Fisher Scientific | 12-544-G | Chamber assembly |
PE α-human CD11a Clone HI 111 | eBioscience | 12-0119-71 | Reagent for Fig.1 |
PE anti-human CD54 | eBioscience | 12-0549 | Reagent for Fig.1 |
Mouse IgG1 Isotype Control PE | eBioscience | 12-4714 | Reagent for Fig.1 |
hydraulic micromanipulator | Narishige International | MO-303 | Micropipette system |
Mechanical manipulator | Newport Corp. | 461-xyz-m, SM-13, DM-13 | Micropipette system |
piez–lectric translator | Physik Instruments | P-840 | Micropipette system |
LabVIEW | National Instruments | Version 8.6 | Micropipette system |
DAQ board | National Instruments | USB-6008 | Micropipette system |
Optical table | Kinetic Systems | 5200 Series | Micropipette system |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone