Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
A hemolysis assay can be used as a rapid, high-throughput screen of drug delivery systems' cytocompatibility and endosomolytic activity for intracellular cargo delivery. The assay measures the disruption of erythrocyte membranes as a function of environmental pH.
Phospholipid bilayers that constitute endo-lysosomal vesicles can pose a barrier to delivery of biologic drugs to intracellular targets. To overcome this barrier, a number of synthetic drug carriers have been engineered to actively disrupt the endosomal membrane and deliver cargo into the cytoplasm. Here, we describe the hemolysis assay, which can be used as rapid, high-throughput screen for the cytocompatibility and endosomolytic activity of intracellular drug delivery systems.
In the hemolysis assay, human red blood cells and test materials are co-incubated in buffers at defined pHs that mimic extracellular, early endosomal, and late endo-lysosomal environments. Following a centrifugation step to pellet intact red blood cells, the amount of hemoglobin released into the medium is spectrophotometrically measured (405 nm for best dynamic range). The percent red blood cell disruption is then quantified relative to positive control samples lysed with a detergent. In this model system the erythrocyte membrane serves as a surrogate for the lipid bilayer membrane that enclose endo-lysosomal vesicles. The desired result is negligible hemolysis at physiologic pH (7.4) and robust hemolysis in the endo-lysosomal pH range from approximately pH 5-6.8.
Although there are many potential high-impact therapeutic targets inside the cell, the intracellular delivery of agents poses a significant challenge. Frequently, drugs, especially biologics, are internalized by cells and trafficked into vesicles that either lead to degradation of their contents through the endo-lysosomal pathway, or are shuttled back out of the cell via exocytosis.1 In the latter process, the internal pH of the vesicles is acidified to approximately 5-6, which is the optimal pH for activity of enzymes that function in this compartment, such as lysozyme.2
Recently, a number of materials have been specifically engineered to leverage the acidification of endosomes to facilitate cytosolic delivery of their cargo. One example of this approach uses synthetic, polymer micelle nanoparticles whose core is zwitterionic and charge-neutral at physiologic pH (i.e. 7.4). However, at pH 6.0 - 6.5, the polymers become protonated and acquire a net positive charge that destabilizes the micelle core, and the exposed polymer segments interact with and disrupt the endosomal membrane. This activity has been shown to promote the endosomal escape of peptide and nucleic acid-based therapeutics, allowing them to access their cytosolic targets.3,4 Other examples of methods developed to mediate endosomal escape that disrupt the membrane barrier include 'fusogenic' peptides or proteins that can mediate membrane fusion or transient pore formation in the phospholipid bilayer.5 Homopolymers of anionic alkyl acrylic acids such as poly(propylacrylic acid) are another well-studied approach, and in these polymers, the protonation state of pendant carboxylic acid dictates transition into a hydrophobic, membrane-disruptive state in endo-lysosomal pH ranges.6,7
One useful model system for screening endosomolytic behavior is the ex vivo pH-dependent hemolysis assay.8 In this model system, the erythrocyte membrane serves as a surrogate for the lipid bilayer membrane that enclose endo-lysosomal vesicles. This generalizable model has been used by others to evaluate the endosomolytic behavior of cell-penetrating peptides and other polymeric gene delivery systems.8-11 In this experiment, human red blood cells and test materials are co-incubated in buffers at defined pHs that mimic extracellular (7.4), early endosomal (6.8), and late endo-lysosomal (< 6.8) environments. The amount of hemoglobin released during the incubation period is quantified as a measure of red blood cell lysis, which is normalized to the amount of hemoglobin released in positive control samples lysed with a detergent.
From screening a small library of potentially endosomolytic test materials, one can infer that samples that produce no hemolysis at pH 7.4, but significantly elevated hemolysis at pH < 6.5, will be the most effective and cytocompatible candidates for cytosolic drug delivery. Materials that fit these criteria would be expected to remain inert and not indiscriminately destroy lipid bilayer membranes (i.e. that could cause cytotoxicity) until being exposed to a drop in the local pH following internalization into endo-lysosomal compartments.
In this protocol, erythrocytes are isolated from a human donor and co-incubated at pH 5.6, 6.2, 6.8, or 7.4 with experimental endosomolytic drug delivery agents. Intact erythrocytes are pelleted, and the supernatants (containing hemoglobin released from lysed erythrocytes) are analyzed for the characteristic absorbance of hemoglobin via a plate reader (Figure 1).
1. Preparation and Sterilization of Buffers and Test Agents
2. Preparation of Erythrocytes
NOTE: All procedures must be pre-approved by the appropriate Institutional Review Board (IRB), and venipuncture and blood collection must be performed by a trained phlebotomist in order to minimize the risk to the donor. Standard phlebotomy procedures have been published elsewhere.13
3. Lysis Assay 96 Well Plate Setup and Quantification
NOTE: For ease, it is recommended that a separate 96-well plate should be prepared for each pH to be tested, with each sample (at each concentration) loaded at n=3-4 per plate.
NOTE: Different plate readers may have different saturation points and sensitivities, so the choice of a wavelength for measurements depends on whether or not hemolysis data from experimental samples can be reliably normalized against maximum hemolysis as induced by detergent treatment. This requires accurate measurement of absorbance values of the positive control samples.
Typically, the agents that exhibit ideal pH-dependent hemolytic behavior have the highest potential for cytosolic delivery of drugs, nucleic acids, or other bioactive molecules. This is exemplified by Agent #1 as portrayed in Figure 2, which exhibits minimal hemolysis at pH 7.4, but a sharp increase in hemolytic behavior at endosomal pH ranges (< 6.5). Some agents may exhibit significant levels of hemolytic behavior at physiological pH ranges (Agent #2 at 40 μg/ml; Figure 2), suggest...
pH-responsive polymers or other agents designed for endosomolytic function can be rapidly and effectively screened based on lysis of red blood cells at pH values encountered in the endosome (Figure 1; pH 6.8 - early endosome, pH 6.2 - late endosome, pH 5.6 - lysosome).14-17 pH-dependent hemolysis has been used to screen the ability of carriers to mediate endosomal release of biomacromolecular therapeutics (e.g. peptides, siRNA, ODNs, proteins), and results of this assay can be predict...
IRB approval: Procedures involving human subjects have been approved by the Vanderbilt University Institutional Review Board (IRB; Protocol #111251). No conflicts of interest declared.
The authors acknowledge funding through the Department of Defense Congressionally Directed Medical Research Programs (#W81XWH-10-1-0445), National Institutes of Health (NIH R21 HL110056), and American Heart Association (#11SDG4890030).
Name | Company | Catalog Number | Comments |
BD Vacutainer - K2EDTA Vacutainer Tubes | Fisher Scientific | 22-253-145 | For blood collection |
BD Vacutainer Blood Collection Needles, 20.5-gauge | Fisher Scientific | 02-665-31 | For blood collection |
BD Vacutainer Tube Holder / Needle Adapter | Fisher Scientific | 22-289-953 | For blood collection |
BD Brand Isopropyl Alcohol Swabs | Fisher Scientific | 13-680-63 | For blood collection |
BD Vacutainer Latex-Free Tourniquet | Fisher Scientific | 02-657-6 | For blood collection |
Hydrochloric acid (conc.) | Fisher Scientific | A144-500 | For adjustment of pH of D-PBS. |
Triton X-100 | Sigma-Aldrich | T8787 | Positive control |
Dulbecco's PBS | Invitrogen | 14190 | |
Nalgene MF75 Sterile Disposable Bottle-Top Filter Unit with SFCA Membrane | Fisher Scientific | 09-740-44A | |
BD 96-well plates, flat-bottomed, tissue culture-treated polystyrene | Fisher Scientific | 08-772-2C | For plate-reading at the end of the assay. |
BD 96-well plates, round-bottomed, tissue culture-treated polystyrene | Fisher Scientific | 08-772-17 | For incubation of red blood cells with experimental agents. |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone