Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
* Wspomniani autorzy wnieśli do projektu równy wkład.
In the present protocol, we demonstrate a highly efficient and cost-effective small-scale protein purification method, which allows purification of recombinant proteins by uniquely combining a cleavable GST-tag and a small His-tag.
Key assays in enzymology for the biochemical characterization of proteins in vitro necessitate high concentrations of the purified protein of interest. Protein purification protocols should combine efficiency, simplicity and cost effectiveness1. Here, we describe the GST-His method as a new small-scale affinity purification system for recombinant proteins, based on a N-terminal Glutathione Sepharose Tag (GST)2,3 and a C-terminal 10xHis tag4, which are both fused to the protein of interest. The latter construct is used to generate baculoviruses, for infection of Sf9 infected cells for protein expression5. GST is a rather long tag (29 kDa) which serves to ensure purification efficiency. However, it might influence physiological properties of the protein. Hence, it is subsequently cleaved off the protein using the PreScission enzyme6. In order to ensure maximum purity and to remove the cleaved GST, we added a second affinity purification step based on the comparatively small His-Tag. Importantly, our technique is based on two different tags flanking the two ends of the protein, which is an efficient tool to remove degraded proteins and, therefore, enriches full-length proteins. The method presented here does not require an expensive instrumental setup, such as FPLC. Additionally, we incorporated MgCl2 and ATP washes to remove heat shock protein impurities and nuclease treatment to abolish contaminating nucleic acids. In summary, the combination of two different tags flanking the N- and the C-terminal and the capability to cleave off one of the tags, guaranties the recovery of a highly purified and full-length protein of interest.
The purification of recombinant proteins is crucial to address fundamental questions in biochemistry. Conventional ways of protein purification like ion exchange chromatography and size exclusion chromatography rely on physical properties of the target protein such as its isoelectric point and charge or size, respectively. The latter protein characteristics are shared by a variety of proteins, which increases considerably the chance of contaminating proteins in conventional protein purification strategies. This problem may be circumvented with the use of multiple purification columns, which is time consuming. At the same time, the latter chromatography methods demand expensive experimental setup. Affinity-tag purification strongly increases target-specificity, as in most of the cases the tag will be unique to the protein of interest. In recent studies, Flag- or HA-affinity purification has been widely used.
In contrast to existing recombinant protein purification protocols in which single tags are used, we established the unique combination of two tags. Our method involves the fusion of a GST-tag at the N-terminus and a His-tag at the C-terminus of the protein of interest, for an optimal ratio between quantity and purity of the desired protein. The GST is a long tag (29 kDa), which is highly efficient for purification on glutathione Sepharose beads. Furthermore, using GST guarantees cost-effectiveness of our method1. The possibility to cleave off the GST with the PreScission enzyme (with recognition sequence LeuGluValLeuPheGln/GlyPro, resulting in the addition of only two amino acids) has many advantages, for instance, this strategy avoids alterations of the physiological protein functions due to allosteric hindrance. The small His-tag fused to the other protein extremity serves in a second purification step to increase protein purity by washing off the cleaved GST, as well as degraded proteins and other contaminants. Additionally, the protocol does not require a dialysis step when switching from the GST to the His-purification step column (TALON resin). Common contaminants in such purification processes are Heat Shock Proteins (HSP). The addition of an incubation step with MgCl2 and ATP allows the removal of these contaminants (Figure 1).
Fast Protein Liquid Chromatography (FPLC) and High Performance Liquid Chromatography (HPLC) are common techniques that depend on expensive instrumentation to generate high yield of the purified protein of interest. The batch purification protocol we present here, in contrast, is manual and does not require an expensive instrumental setup. A high yield of protein can be reached by scaling up the protocol. At the same time, with the batch purification protocol, the elution volume can be adjusted in order to enhance protein concentration, which is not given with FPLC or HPLC.
Also, with the batch GST-His purification protocol, proteins with a size-range of ~10-300 kDa can be purified. One of the biggest advantages is given by the fact that one can purify several proteins at the same time, for instance, both a wild-type and its mutant protein. The success of the presented protocol solely depends on the expression level and solubility of the protein of interest.
1. Production of Recombinant Baculovirus
Baculoviruses are generated using the Bac-to-Bac Baculovirus Expression System of Invitrogen mainly in accordance with the manufacturer's protocol with only slight modifications:
2. Recombinant Protein Expression
3. Preparation of Soluble Cell Lysate
All of the following incubation steps are carried out at 4 °C under mild rotation.
4. Binding of Protein on GST Beads
Comment: The incubation time needs to be optimized according to the stability of the protein and binding efficiency.
5. PreScission Cleavage of the GST
Comment: The incubation time of the PreScission step needs to be optimized according to the molecular weight as well as the stability of the protein. If degradation is observed, this incubation time can be decreased to a minimum of 2 hr instead of overnight.
Comment: The remaining beads can be used for analysis of cleavage efficiency (Figure 3B, lane 3). Usually, 70-80% of the protein is cleaved.
6. Protein-binding to TALON Metal Affinity Resin
Comment: Dividing the elution in several fractions increases binding/washes efficiency.
Comment: This corresponds to the TALON bound sample (Figure 3B, lane 4).
7. Elution of the Purified Protein
Comment: The remaining beads can be used for analysis of elution efficiency (Figure 3B, lane 8). Typically, 60-80% of the protein is eluted in total.
Comment: The protein of interest can also be detected throughout the purification procedure using anti-GST and anti-His antibodies (Figure 3C).
8. Storage of the Purified Protein
In order to illustrate the efficiency of the GST-His purification protocol, we purified Rec14, a S. pombe protein of 32.9 kDa. The Rec14 cDNA was cloned in our modified pFastBac1 vector allowing the additions of GST- and His-tags at the N- and C- termini, respectively (Figure 1A). Recombinant baculovirus were then prepared and used to infect SF9 infected cells for protein expression. The soluble cell lysates were incubated with GST beads and bound-proteins were eluted by cleaving the GST with Pr...
The GST-His purification protocol presented here is suitable for the purification of a broad range of sizes of recombinant proteins: We successfully purified LiRAD51 (41kDa), piBRCA2 (120kDa), PALB2 (130kDa), and an unstable high molecular weight protein of Leishmania infantum: LiBRCA2 (125kDa)6,9. Moreover, the proteins purified with this protocol were biochemically active6. The success of this method solely depends on the expression, solubility and stability of th...
We thank Anne-Marie Dion-Cote for discussions leading to the development of the method. J.K. and R.B. are FQNRT doctoral scholars, M.-M.G. is a Vanier CIHR scholar, and J.-Y.M. is a FRSQ senior researcher. This work was supported by funds from the Natural Sciences and Engineering Research Council to J-Y. M.
Name | Company | Catalog Number | Comments |
Name of the reagent | Company | Catalogue number | Comments (optional) |
REAGENTS | |||
E.Coli DH10Bac (competent) | Invitrogen | ||
Bac-to-Bac Baculovirus Expression System | Invitrogen | ||
Maxi Prep Kit | Qiagen | 12163 | Solution I and II |
Ultra Pure Bluo-Gal | Gibco (Life) | 15519028 | |
IPTG | Gibco (Life) | 15529019 | |
Sf9 infected cells | ATCC | CRL-1711 | |
PreScission enzyme | GE Healthcare | 27084301 | |
Grace's infected medium supplemented | Gibco (Life) | 11605-094 | |
Fetal Bovine Serum characterized | Hyclone | SH30396.03 | |
P/S (Penicillin-Streptomycin) | Gibco (Life) | 15070-063 | |
Glutathione Sepharose resin | GE bioscience | 17075605 | |
Protease inhibitor cocktail | Roche | 11873580001 | |
Talon resin | Clontech | 635504 | |
Imidazole | BioShop | 288324 | |
Gentamicin | Gibco (Life) | 15710064 | |
Polyclonal GST-antibody | Production in house | ||
Monoclonal 6X-His-antibody | Clontech | 631212 | |
EQUIPMENT | |||
Dounce homogenizer (tight) | Wheaton | 357546 | |
Sonicator (Fisher dismembrator) | Fisher | Model 150 | |
Dialysis bag (50 mm) | Fisher Scientific | 2115217 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone