Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Hepatitis C Virus (HCV) is a major human pathogen that causes liver disorders, including cirrhosis and cancer. An HCV infectious cell culture system is essential for understanding the molecular mechanism of HCV replication and developing new therapeutic approaches. Here we describe a protocol to investigate various stages of the HCV replication cycle.
Hepatitis C Virus (HCV) affects 3% of the world’s population and causes serious liver ailments including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV is an enveloped RNA virus belonging to the family Flaviviridae. Current treatment is not fully effective and causes adverse side effects. There is no HCV vaccine available. Thus, continued effort is required for developing a vaccine and better therapy. An HCV cell culture system is critical for studying various stages of HCV growth including viral entry, genome replication, packaging, and egress. In the current procedure presented, we used a wild-type intragenotype 2a chimeric virus, FNX-HCV, and a recombinant FNX-Rluc virus carrying a Renilla luciferase reporter gene to study the virus replication. A human hepatoma cell line (Huh-7 based) was used for transfection of in vitro transcribed HCV genomic RNAs. Cell-free culture supernatants, protein lysates and total RNA were harvested at various time points post-transfection to assess HCV growth. HCV genome replication status was evaluated by quantitative RT-PCR and visualizing the presence of HCV double-stranded RNA. The HCV protein expression was verified by Western blot and immunofluorescence assays using antibodies specific for HCV NS3 and NS5A proteins. HCV RNA transfected cells released infectious particles into culture supernatant and the viral titer was measured. Luciferase assays were utilized to assess the replication level and infectivity of reporter HCV. In conclusion, we present various virological assays for characterizing different stages of the HCV replication cycle.
Hepatitis C virus (HCV) causes cirrhosis and liver cancer. It affects 170 million people worldwide with 350,000 people dying annually1-3. HCV is a positive strand RNA virus with a genome size of 9.6 kb. The HCV genome is translated as a single polyprotein of ~3,000 amino acid residues that is proteolytically cleaved by various cellular and viral proteases into 10 polypeptides. HCV is the prototype virus in the genus Hepacivirus and belongs to family Flaviviridae4. Upon exposure, HCV establishes chronic infection in 80% of the individuals. The infection is mostly asymptomatic and timely diagnosis can allow therapeutic intervention to prevent liver deterioration. Current treatment is suboptimal and no vaccine is available5,6.
The etiology of hepatitis C was first described in 1989 7. Studying HCV replication is important for hepatitis C vaccine and treatment research, but it had been long hampered by the lack of an efficient viral culture system. A molecular clone of HCV was shown to be infectious in chimpanzees upon intrahepatic inoculation8. Subsequently, HCV sub-genomic replicons were described, which allowed to dissect the viral genome replication stage in a cell culture system9,10. Discovery of a genotype 2a HCV isolate JFH-1 (Japanese Fulminant hepatitis-1), capable of infecting cell culture opened new avenues for HCV replication research11-13. Genotype 2a strain JFH-1 based inter- and intra-genotypic chimeric viruses and genotype 1 HCV based infectious culture systems are available as well14-18.
We have successfully used JFH-1 strain and HCV intragenotype 2a chimeric virus to obtain the high-resolution functional profiling map of protein domains and cis-acting RNA elements19,20. According to this, here we describe an effective culture system routinely used that allows studying various stages of the HCV replication cycle and host-pathogen interaction. We present virological assays to assess viral genome replication and de novo infectivity of intragenotype 2a HCV and a Renilla luciferase based reporter HCV.
A general outline of the protocol is illustrated in Figure 1.
1. Cells
2. Virus and Plasmid Constructs
3. In Vitro HCV RNA Transcription
4. HCV RNA Transfection and Sample Collection
5. Reverse Transcription-quantitative PCR (RT-qPCR) for Assessing the HCV Genome Copies
6. Western Blotting Analysis for Detecting HCV Protein Expression (Figure 3C)
7. Immunofluorescence Assay (IFA)
8. Measuring Virus Titer
9. Renilla Luciferase Reporter Assay for Viral Genome Replication and Infectivity
10. Statistical Analysis
Hepatitis C virus is a RNA virus. Thus for genetic manipulation purpose, the HCV genomic cDNA has been cloned into a bacterial plasmid vector. A T7 RNA polymerase promoter sequence was introduced immediately before the 5’ end of the HCV genome. A general outline of HCV analysis workflow is presented in Figure 1. To generate HCV genomic RNA with precise 3’ end, the HCV genome containing plasmid is cut with XbaI restriction enzyme and the generated single-stranded overhang was blu...
This illustration describes a method for analyzing the hepatitis C Virus replication cycle. HCV is a human pathogen and the prescribed biosafety protocol will have to be strictly followed. Infectious HCV cell culture systems have been described previously11-13,16,17. There are few crucial points we implement when following the illustrated protocol. First, it is of high importance to have good quality of intact full length viral genomic RNA for downstream studies. The input plasmid carrying the viral cDNA has t...
The authors have nothing to disclose.
We thank F. Chisari for providing Huh-7.5.1 cell line. We would like to thank Justine Ho for editing the manuscript. This work was supported by Cedars-Sinai Medical Center Institutional Programmatic Research Award and National Center for Advancing Translational Sciences, Grant UL1TR000124 to V.A.
Name | Company | Catalog Number | Comments |
Dulbecco’s modified Eagle’s medium (DMEM) | Fisher Scientific | 10-017-CV | |
Non essential amino acid | Fisher Scientific | MT25025CI | |
HEPES | Life Technologies | 15630080 | |
Glutamax | Life Technologies | 35050061 | |
Opti-MEM Reduced Serum Medium,no Phenol Red | Life Technologies | 11058-021 | |
Huh-7.5.1 | The Scripps Research Institute | The cell line was kindly provided by Dr. Francis Chisari to Dr. Arumugaswami under executed MTA between The Scripps Research Institute and Cedars-Sinai Medical Center | |
Plasmids (pFNX-HCV, pFNX-HCV Pol null, pFNX-Rluc, and pFNX-Rluc Pol null) | Cedars-Sinai Medical Center | The HCV plasmids were synthesized by Dr. Arumugaswami using overlapping oligo-nucleotides. | |
XbaI | New England Biolabs Inc. | R0145S | |
Mung Bean Nuclease | New England Biolabs Inc. | M0250S | |
T7 RiboMAX Express Large Scale RNA Production System | Promega | P1320 | |
Rneasy Mini Kit | Qiagen | 74104 | |
Nanodrop 2000 | Thermo Scientific | Nanodrop 2000 | |
Electroporation Cuvette (4 mm) | Bioexpress | E-5010-4 | |
Gene Pulser Xcell Total System | Bio-Rad | 165-2660 | |
mouse monoclonal anti-dsRNA antibody J2 | English & Scientific Consulting Kft. | 10010200 | |
Goat anti-rabbit IgG Alexa Fluor 488 | Life Technologies | A11008 | |
Goat anti-rabbit IgG Alexa Fluor 594 | Life Technologies | A11020 | |
PVDF membrane package | Bio-Rad | 162-0263 | |
Blotting Grade Blocker Non Fat Dry Milk | Bio-Rad | 170-6404XTU | |
Tween-20 | Bio-Rad | 170-6531XTU | |
Anti-Hepatitis C Virus NS3 antibody [8 G-2] | Abcam | ab65407 | |
Anti-Hepatitis C Virus NS3 antibody [H23] | Abcam | ab13830 | |
Goat anti-mouse IgG conjugated with horseradish peroxidase (HRP) | Jackson ImmunoResearch Laboratories Inc. | 115-035-003 | |
Amersham ECL Prime Western Blotting Detection Reagents | GE Healthcare Life Sciences | RPN2236 | |
SUPERSCRIPT III RT | Life Technologies | 18080085 | |
SYBR QPCR SUPERMIX W/ROX | Life Technologies | 11744500 | |
ViiA 7 real-time PCR system | Life Technologies | NA | |
Renilla Luciferase Assay System kit | Promega | E2810 | |
RNase-Free DNase | Promega | M6101 | |
GloMax-Multi Detection System (Luminometer) | Promega |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone