Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

A simple protocol to determine the neutral lipid content of algal cells using a Nile Red staining procedure is described. This time-saving technique offers an alternative to traditional gravimetric-based lipid quantification protocols. It has been designed for the specific application of monitoring bioprocess performance.

Streszczenie

Algae are considered excellent candidates for renewable fuel sources due to their natural lipid storage capabilities. Robust monitoring of algal fermentation processes and screening for new oil-rich strains requires a fast and reliable protocol for determination of intracellular lipid content. Current practices rely largely on gravimetric methods to determine oil content, techniques developed decades ago that are time consuming and require large sample volumes. In this paper, Nile Red, a fluorescent dye that has been used to identify the presence of lipid bodies in numerous types of organisms, is incorporated into a simple, fast, and reliable protocol for measuring the neutral lipid content of Auxenochlorella protothecoides, a green alga. The method uses ethanol, a relatively mild solvent, to permeabilize the cell membrane before staining and a 96 well micro-plate to increase sample capacity during fluorescence intensity measurements. It has been designed with the specific application of monitoring bioprocess performance. Previously dried samples or live samples from a growing culture can be used in the assay.

Wprowadzenie

Due to their ability to store lipid bodies under certain stress conditions, algae have received a great deal of attention in recent years as a potential renewable fuel source1,2. Neutral lipids can account for over 60% of the cell dry weight under appropriate growth conditions3. Yet the industry does not have a simple, clean, rapid, and reliable standardized protocol to quantitate lipid content of algal cells in order to properly monitor bioprocess performance, analyze cultures, and screen for new strains.

The Bligh-Dyer gravimetric method developed some 50 years ago remains among the most common techniques used today4,5. While this procedure is simple, reliable, and easy to carry out, it is time-consuming, necessitates large sample volumes, and makes use of toxic solvents. It is not practical for analyzing many samples from a fermentation run or screening for new oil-rich strains. Other methods have been developed, but usually require advanced equipment and have not been standardized6.

An alternative that has garnered a great deal of interest is the Nile Red stain. Nile Red, a dye that fluoresces preferentially in non-polar environments, has been used to identify or quantify lipid bodies in various organisms including nematodes7, yeast8, bacteria9, and algae10-19. Initial techniques involving Nile Red were mostly qualitative or semi-quantitative, combining the stain with single-cuvette spectrophotometry or flow cytometry. In addition, some classes of algae such as green algae have thick cell wells that are mostly impermeable to the dye, which limited the range of the technique10.

Recent improvements to the Nile Red staining method have been reported that bypass the initial shortcomings of the protocol10,11. Staining the cells in the presence of a carrier solvent such as DMSO10 or ethanol10,11 linearizes the relationship between oil content and absorbance, allowing for reliable quantitative measurements. The solvent helps permeabilize the cell membrane so that the Nile Red molecules can pass through. In addition, incorporating a spectrophotometer with micro-plate reading capabilities enables high throughput protocols suitable for quantitative analysis.

In this article we detail a simple method for measuring oil content of algal cells by staining cultures with Nile Red in the presence of ethanol, a mild solvent. In order to most accurately account for background noise in the measurements, a standard curve correlating fluorescence intensity to oil content is developed using algal cells of known oil composition. The method is adapted from previously published protocols10,11. By using a 96-well spectrophotometer, one is able to analyze the same amount of samples in an hour that would take days to monitor by gravimetric methods. Furthermore, by calibrating using representative samples of the desired algal species this method produces relatively precise measurements that are directly interpretable. There exist many protocols outlining methods of staining algae with Nile Red optimized for different strains and applications; the protocol presented here was originally developed by de la Hoz Siegler et al.11 for Auxenochlorella protothecoides, Chlorella vulgaris, Scenedesmus dimorphus, and Scenedesmus obliquus, although it is likely suitable for many more species and classes. It has been designed with the specific application of monitoring bioprocess performance and it works equally well for previously dried samples and wet samples from a growing culture.

Protokół

1. Isolation of Dry Algal Biomass to be Used as Standards for Fluorescence Readings

  1. Remove a sample volume from the growing algal culture that will provide at least 200 mg of dry biomass, 400-600 mg is preferable.
  2. Centrifuge sample at 4 °C for 10 min at 10,000 x g. Discard the supernatant and wash the pellet with an equal volume of phosphate buffer formulated to the same pH as the growth media.
  3. Repeat step 1.2 for a total of 3 washing steps.
  4. Re-suspend the pellet in de-ionized water and transfer to a pre-weighed weigh dish. Let dry at 50 °C for 48 hr. NOTE: Drying under vacuum will decrease drying time and drying the culture at temperatures above 50 °C may make resuspension difficult.
  5. Store dried algal cultures at room temperature for future use.

2. Gravimetric Quantification of Neutral Lipids by Hexane Extraction (Adapted from Bligh and Dyer4)

  1. Measure approximately 50 mg of dry algal biomass in a weigh dish. NOTE: Masses ranging from 40-80 mg can be used without loss of reproducibility.
  2. Transfer the biomass to a mortar pre-washed with hexane. If necessary, wash the weigh dish with a small amount (1 ml) of hexane using a Pasteur pipette in order to completely transfer the biomass to the mortar. NOTE: Hexane is a highly volatile and toxic substance. It must be handled in the fume hood with proper protective clothing.
  3. Grind the algal biomass for 5 min using a pestle. Begin with gentle grinding and gradually increase intensity. Grind the biomass into a fine and smooth paste in the 5 min period. If excess hexane is used when transferring the biomass to the mortar, it is best to wait for the hexane to evaporate before grinding.
  4. Add a few ml of hexane to the mortar and mix the resulting slurry with the pestle until it is homogenized. Ensure that all the cell debris adhered to the walls of the mortar are knocked free and suspended in the liquid.
  5. Transfer the hexane-cell mass mixture to a centrifuge tube. NOTE: The centrifuge tube must be either glass or a suitable polymer compatible with hexane such as Teflon.
  6. Repeat steps 2.4 and 2.5 until all the biomass has been transferred to the centrifuge tube (3-5x).
  7. Centrifuge the sample at 4 °C for 20 min at 10,000 x g.
  8. Carefully pipette the supernatant into a pre-weighed metal weigh dish. Store in the fume hood.
  9. Perform a 2nd hexane extraction by adding 3 ml of hexane to the pellet and vortexing vigorously for 1 min.
  10. Repeat steps 2.7 and 2.8. If necessary, run the samples for 30 min in the centrifuge during the second extraction to ensure all cell debris fully settles. Determine mass of oil extracted gravimetrically after hexane has completely evaporated.

3. Fluorometric Quantification of Neutral Lipids Using Nile Red (as Reported by de la Hoz Siegler et al.11)

NOTE: Only 10 µl of an algal suspension at 5 g/L is needed for the fluorescence reading. Generally, isolation of dry algal biomass from 1.5 ml of culture broth is more than sufficient. Also, the light intensity of the lamp in the spectrophotometer can degrade over time. It is recommended to include standards in every experiment to ensure that variations in the instrument do not add unnecessary error to the measurements.

  1. Prepare a Nile Red solution at a concentration of 10 µg/ml dissolved in alcohol reagent grade ethanol. Store this solution in the dark at 4 °C.
  2. Prepare a 30% (v/v) ethanol solution in deionized water and store at 4 °C.
  3. Prepare all algal samples at the same biomass concentration (5 g/L is recommended) and in the same manner as the standards used in the measurement. Do this by either suspending pre-dried samples in the appropriate amount of phosphate buffer (0.6 g/L potassium phosphate dibasic, 1.4 g/L potassium phosphate monobasic), or adjusting the concentration of a growing algal culture to 5 g/L with phosphate buffer after measuring the turbidity. NOTE: measurements performed on live algal cultures will often have larger error associated with them depending on the precision of the turbidity calibration curve. Resuspending dried samples may require the use of a homogenizer to fully disperse the biomass.
  4. For each sample, mix 80 µl of the 30% ethanol solution, 10 µl of the Nile Red solution, and 10 µl of algal suspension in a single well of a 96-well plate. In order to properly account for the variability of the fluorescence measurement, perform 5 replicates of each sample.
  5. Run a two point calibration curve with standards prepared previously in order to account for day-to-day variations in the instrument and preparation. Prepare the standards for fluorescence measurement using the same procedure as the samples. NOTE: Generally two points is sufficient for recalibration of the instrument, three points can be run to verify linearity.
  6. Perform the fluorescence measurements in a multi-well plate reader spectrophotometer. The following conditions were found to yield the most consistent results11:
    1. Shake at 1,200 rpm, orbit 3 mm, for 30 sec.
    2. Incubate at 40 °C for 10 min.
    3. Shake at 1,200 rpm, orbit 3 mm, for 30 sec.
    4. Record fluorescence, excitation at 530 nm, emission at 604 nm.
  7. Convert the fluorescence measurements to oil content using the results from the internal standards.

4. Fluorescence Microscopy Technique

NOTE: The staining protocol described in section 3 is designed for quantitative analysis, but it can also be useful to provide visual representations of stain-based techniques for educational and illustrative purposes. To produce images of sample fluorescence one requires an optical microscope with traditional transmission and additional epifluorescence illumination sources. Excitation and emission light filters in the 530 nm (green) and 604 nm (red) range, respectively, are needed for the Nile Red stain as well as a microscope mounted camera with associated software. The images shown in this study (Figure 1) were acquired using a bright field microscope equipped with a camera and Monochrome to RGB converter unit. The procedure for producing Nile Red fluorescence images using these tools is outlined below:

  1. Prepare a culture sample with the Nile Red stain according to section 3 of the protocol. NOTE: a sample in the 5 g/L concentration range produces slides of adequate cell density without overcrowding.
  2. After completing step 3.6 of the staining protocol, prepare a microscope slide of the processed sample according to standard laboratory procedures.
  3. Starting with the microscope in transmission mode, load the prepared slide into the microscope, and locate the cells at the desired magnification (images shown in this article were acquired with the 100X objective).
  4. Once focused, switch the microscope from transmission to epifluorescence illumination mode. The light source should now be coming directly from the objective lens (this can be confirmed visually by observing the space between the slide and the objective lens).
  5. Insert a green excitation filter into the light source and a red emission filter into the observation light path; the fluorescence of the stained cells should now be directly visible through the eyepiece.
  6. Switch the microscope observation mode from the eyepiece to the mounted camera and use viewing software to capture an image of the fluorescing cells. Depending on the sensitivity of the camera, the sample may not initially appear in the preview window (i.e. the screen will be black); to remedy this, adjust the exposure time and gain of the camera to a level where the cells are visible. Specific settings will vary with instruments, equipment, and cell types.

Wyniki

Representative algal cells stained with Nile Red dye are depicted in Figure 1. Parts A and B of Figure 1 display images of A. protothecoides grown in excess nitrogen, leading to very low intracellular lipid accumulation. In parts C and D, samples of A. protothecoides grown under nitrogen limitation are shown. Under transmission illumination, the lipid bodies of the cell can be visualized with careful in...

Dyskusje

The algae used in the standard curve must be the same species cultivated under the same experimental conditions as those being measured. Significant changes in media composition, cultivation technique, and staining protocol can affect the intensity of the fluorescence reading. Hexane extraction (described in sections 1 and 2) was used to determine the neutral lipid content of samples used in the standard curve. For accurate fluorescence intensity measurements, all samples must be analyzed at the same biomass concentratio...

Ujawnienia

The authors declare that they have no competing financial interests. 

Podziękowania

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada for providing financial support for this project.

Materiały

NameCompanyCatalog NumberComments
Dry Weight
25 ml disposable pipettesFisher13-676-10K
Pipette BulbFisher13-681-51
40 ml Nalgene Teflon Centrifuge TubesFisher05-562-16ATeflon needed for hexane
Weigh Dishes (polypropylene)Fisher2-202B
1.5 ml micro-centrifuge tubesFisher05-408-129
CentrifugeSorvallRC6plus
Drying Oven (Fisher 625D)Fisher13-254-2
Storage vialsFisher0337-4
Bench-top microcentrifuge (Eppendorf 5415D)Fisher05-40-100
Gravimetric Quantification
Porcelain Mortar (Coorstek)Fisher12-961A
Porcelain Pestle (Coorstek)Fisher12-961-5A
40 ml Centrifugation tubes (FEP)Fisher05-562-16ACould also use glass tubes
Pasteur Glass PipettesFisher13-678-20C
Aluminum weigh dishesFisher08-732-101
HexanesFisherH292-4
Fluorometric quantification of oil content
Fluorescence multi-well plate readerThermo Lab SystemsFluoroskan Ascent
Fluorescence reader softwareThermo Lab SystemsAscent Software 2.6
COSTAR 96 well plate with round bottomFisher06-443-2
Nile Red SigmaN3013-100MG
Ethanol (Alcohol reagent grade)FisherAC65109-0020
Imaging Fluorescent cells
Leica DMRXA2 (or equivalent) microscopeLeicaDMRXA2
Microscope slidesFisher12-550-15
Microscope cover slipsFisher12-541B
CameraQimagingRetiga Ex
Imaging softwareQimagingQCapture v.1.1.8

Odniesienia

  1. Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306 (2007).
  2. . National Algal Biofuels Technology Roadmap. Energy Efficiency & Renewable Energy. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. , (2010).
  3. de la Hoz Siegler, H., et al. Optimization of microalgal productivity using an adaptive, non-linear model based strategy. Bioresour. Technol. 104, 537-546 (2012).
  4. Bligh, E. G., Dyer, W. J. A Rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911-917 (1959).
  5. Hara, A., Radin, N. S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 90, 420-426 (1978).
  6. Han, Y., et al. Review of methods used for microalgal lipid-content analysis. Energ. Procedia. 12, 944-950 (2011).
  7. Pino, E. C., et al. Biochemical and high throughput microscopic assessment of fat mass in Caenorhabditis elegans. J. Vis. Exp. (73), (2013).
  8. Sitepu, I. R., et al. An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J. Microbiol. Meth. 91, 321-328 (2012).
  9. Izard, J., Limberger, R. J. Rapid screening method for quantitation of bacterial cell lipids from whole cells. J. Microbiol. Meth. 55, 411-418 (2003).
  10. Chen, W., et al. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Meth. 77, 41-47 (2009).
  11. de la Hoz Siegler, H., et al. Improving the reliability of fluorescence-based neutral lipid content measurements in microalgal cultures. Algal Res. 1, 176-184 (2012).
  12. de la Jara, A., et al. Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J. Appl. Phycol. 15, 433-438 (2003).
  13. Elsey, D., et al. Fluorescent measurement of microalgal neutral lipids. J. Microbiol. Meth. 68, 639-642 (2007).
  14. Feng, G. -. D., et al. Evaluation of FT-IR and Nile Red methods for microalgal lipid characterization and biomass composition determination. Bioresour. Technol. 128, 107-112 (2013).
  15. Guzmán, H., et al. Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquacult. Int. 18, 189-199 (2010).
  16. Huang, G. -. H., et al. Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenerg. 33, 1386-1392 (2009).
  17. Lee, S., et al. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol. Tech. 12, 553-556 (1998).
  18. Montero, M., et al. Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting. J. Appl. Phycol. 23, 1053-1057 (2011).
  19. Vigeolas, H., et al. Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. J. Biotechnol. 162, 3-12 (2012).
  20. Bertozzini, E., et al. Application of the standard addition method for the absolute quantification of neutral lipids in microalgae using Nile red. J. Microbiol. Meth. 87, 17-23 (2011).
  21. Kou, Z., et al. Fluorescent measurement of lipid content in the model organism Chlamydomonas reinhardtii. J. Appl. Phycol. , 1-9 (2013).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Algal CellsNeutral LipidsFluorescenceNile RedAuxenochlorella ProtothecoidesLipid ContentBioprocess MonitoringRapid ProtocolGravimetric MethodsCell Membrane Permeabilization

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone