Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Rapid bioassessment protocols using benthic macroinvertebrates are often used to monitor and assess water quality. An efficient protocol involves collections of Chironomidae surface-floating pupal exuviae (SFPE). Here, techniques for field collection, laboratory processing, slide mounting, and identification of Chironomidae SFPE are described.
Rapid bioassessment protocols using benthic macroinvertebrate assemblages have been successfully used to assess human impacts on water quality. Unfortunately, traditional benthic larval sampling methods, such as the dip-net, can be time-consuming and expensive. An alternative protocol involves collection of Chironomidae surface-floating pupal exuviae (SFPE). Chironomidae is a species-rich family of flies (Diptera) whose immature stages typically occur in aquatic habitats. Adult chironomids emerge from the water, leaving their pupal skins, or exuviae, floating on the water’s surface. Exuviae often accumulate along banks or behind obstructions by action of the wind or water current, where they can be collected to assess chironomid diversity and richness. Chironomids can be used as important biological indicators, since some species are more tolerant to pollution than others. Therefore, the relative abundance and species composition of collected SFPE reflect changes in water quality. Here, methods associated with field collection, laboratory processing, slide mounting, and identification of chironomid SFPE are described in detail. Advantages of the SFPE method include minimal disturbance at a sampling area, efficient and economical sample collection and laboratory processing, ease of identification, applicability in nearly all aquatic environments, and a potentially more sensitive measure of ecosystem stress. Limitations include the inability to determine larval microhabitat use and inability to identify pupal exuviae to species if they have not been associated with adult males.
Biological monitoring programs, which use living organisms to evaluate environmental health, are often used to assess water quality or monitor success of ecosystem restoration programs. Rapid bioassessment protocols (RBP) using benthic macroinvertebrate assemblages have been popular among state water resource agencies since 19891. Traditional methods of sampling benthic macroinvertebrates for RBPs, such as the dip-net, Surber sampler, and Hess sampler2, can be time-consuming, expensive, and may only measure assemblages from a particular microhabitat3. An efficient, alternative RBP for generating biological information about a particular water body involves collection of Chironomidae surface-floating pupal exuviae (SFPE)3.
The Chironomidae (Insecta: Diptera), commonly known as non-biting midges, are holometabolous flies that typically occur in aquatic environments before emerging as adults on the water’s surface. The chironomid family is species-rich, with approximately 5,000 species described worldwide; however, as many as 20,000 species are estimated to exist4. Chironomids are useful in documenting water and habitat quality in many aquatic ecosystems because of their high diversity and variable pollution tolerance levels5. Furthermore, they are often the most abundant and widespread benthic macroinvertebrates in aquatic systems, typically accounting for 50% or more of the species in the community5,6. Following emergence of the terrestrial adult, the pupal exuviae (cast pupal skin) remains floating on the water’s surface (Figure 1). Pupal exuviae accumulate along banks or behind obstructions through the action of wind or water current and can be easily and rapidly collected to give a comprehensive sample of chironomid species that have emerged during the previous 24-48 hr7.
The relative abundance and taxonomic composition of collected SFPE reflects water quality, considering that some species are very pollution tolerant, while others are quite sensitive5. The SFPE method has many advantages over traditional larval chironomid sampling techniques including: (1) minimal, if any, habitat disturbance occurs at a sampling area; (2) samples do not focus on collecting living organisms, but rather the non-living skin, so the trajectory of community dynamics is not affected; (3) identification to genus, and often species, is relatively easy given appropriate keys and descriptions3; (4) collecting, processing, and identifying samples is efficient and economical in comparison to traditional sampling methods3,8,9; (5) accumulated exuviae represent taxa that have originated from a wide range of microhabitats10; (6) the method is applicable in nearly all aquatic environments, including streams and rivers, estuaries, lakes, ponds, rock pools, and wetlands; and (7) SFPE maybe be a more sensitive indicator of ecosystem health since they represent individuals that have completed all immature stages and successfully emerged as adults11.
The SFPE method is not a new approach for gathering information about chironomid communities. Use of SFPE was first suggested by Thienemann12 in the early 1900s. A variety of studies have used SFPE for taxonomic surveys (e.g., 13-15), biodiversity and ecological studies (e.g. 7,16-19), and biological assessments (e.g.,20-22). Additionally, some studies have addressed different aspects of sample design, sample size, and number of sample events required for achieving various detection levels of species or genera (e.g.,8,9,23). These studies indicate that relatively high percentages of species or genera can be detected with moderate effort or expense associated with sample processing. For example, Anderson and Ferrington8 determined that based on a 100-count subsample, 1/3rd less time was required to pick SFPE samples compared to dip-net samples. Another study determined that 3-4 SFPE samples could be sorted and identified for every dip-net sample and that SFPE samples were more efficient than dip-net samples at detecting species as species richness increased3. For example, at sites with species richness values of 15-16 species, the average dip-net efficiency was 45.7%, while SFPE samples were 97.8% efficient3.
Importantly, the SFPE method has been standardized in the European Union24 (known as chironomid pupal exuviae technique (CPET)) and North America25 for ecological assessment, but the method has not been described in detail. One application of the SFPE methodology was described by Ferrington, et al.3; however, the primary focus of that study was to evaluate the efficiency, efficacy, and economy of the SFPE method. The purpose of this work is to describe all steps of the SFPE method in detail, including sample collection, laboratory processing, slide mounting, and genus identification. The target audience includes graduate students, researchers, and professionals interested in expanding traditional water quality monitoring efforts into their studies.
1. Preparation of Field Collection Supplies
2. Field Collection
3. Sample Picking
NOTE: The rest of this protocol pertains to a 300 SFPE subsample and may need to be modified for other subsample sizes. See Bouchard and Ferrington's9 subsampling and sampling frequency guidelines for tailoring SFPE methods to meet study-specific goals and resources.
4. Sample Sorting
5. Slide Mounting
6. Genus Identification
Figure 1 illustrates the chironomid life cycle; immature stages (egg, larva, pupa) typically take place in, or closely associated with, an aquatic environment. Upon completion of the larval life stage, the larva constructs a tube-like shelter and attaches itself with silken secretions to the surrounding substrate and pupation occurs. Once the developing adult has matured, the pupa frees itself and swims to the surface of the water where the adult can emerge from the pupal exuviae. The exuviae fills with ...
The most critical steps for successful SFPE sample collection, picking, sorting, slide mounting, and identification are: (1) locating areas of high SFPE accumulation within the study area during field collection (Figure 2A); (2) slowly scanning the contents of the Petri dish for detection of all SFPE during sample picking; (3) developing the necessary manual dexterity to dissect the cephalothorax from the abdomen during slide mounting (Figure 4A); and (4) recognizing key morphologic...
The authors declare that they have no competing financial interests.
Funding for composing and publishing this paper was provided through multiple grants and contracts to the Chironomidae Research Group (L. C. Ferrington, Jr., PI) in the Department of Entomology at the University of Minnesota. Thanks to Nathan Roberts for sharing fieldwork photographs used as figures in the video associated with this manuscript.
Name | Company | Catalog Number | Comments |
Ethanol | Fisher Scientific | S25309B | 70-95% |
Plastic wash bottles | Fisher Scientific | 0340923B | |
Sample jar | Fisher Scientific | 0333510B | Glass or plastic, 60-mL recommended |
Testing sieve | Advantech | 120SS12F | 125-micron mesh size |
Larval tray | BioQuip | 5524 | White |
Stereo microscope | |||
Glass shell vials | Fisher Scientific | 0333926B | 1-dram size |
Plastic dropper | Thermo Scientific | 1371110 | 30 to 35 drops/mL |
Fine forceps | BioQuip | 4524 | #5 |
Petri dish | Carolina | 741158 | Glass or plastic |
Multi-well plate | Thermo Scientific | 144530 | Glass or plastic |
Glass microslides | Thermo Scientific | 3010002 | 3 x 1 in. |
Glass cover slips | Thermo Scientific | 12-519-21G | Circular or square |
Euparal mounting medium | BioQuip | 6372B | |
Pigma pen | BioQuip | 1154F | Black |
Probe | BioQuip | 4751 | |
Kimwipes | Kimberly-Clark Professional™ | 34120 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone