Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we present a protocol based on c-FOS protein immunohistological detection, a classical technique used for the identification of neuronal populations involved in specific physiological responses in vivo and ex vivo.
Many studies seek to identify and map the brain regions involved in specific physiological regulations. The proto-oncogene c-fos, an immediate early gene, is expressed in neurons in response to various stimuli. The protein product can be readily detected with immunohistochemical techniques leading to the use of c-FOS detection to map groups of neurons that display changes in their activity. In this article, we focused on the identification of brainstem neuronal populations involved in the ventilatory adaptation to hypoxia or hypercapnia. Two approaches were described to identify involved neuronal populations in vivo in animals and ex vivo in deafferented brainstem preparations. In vivo, animals were exposed to hypercapnic or hypoxic gas mixtures. Ex vivo, deafferented preparations were superfused with hypoxic or hypercapnic artificial cerebrospinal fluid. In both cases, either control in vivo animals or ex vivo preparations were maintained under normoxic and normocapnic conditions. The comparison of these two approaches allows the determination of the origin of the neuronal activation i.e., peripheral and/or central. In vivo and ex vivo, brainstems were collected, fixed, and sliced into sections. Once sections were prepared, immunohistochemical detection of the c-FOS protein was made in order to identify the brainstem groups of cells activated by hypoxic or hypercapnic stimulations. Labeled cells were counted in brainstem respiratory structures. In comparison to the control condition, hypoxia or hypercapnia increased the number of c-FOS labeled cells in several specific brainstem sites that are thus constitutive of the neuronal pathways involved in the adaptation of the central respiratory drive.
The c-fos gene was identified for the first time at the beginning of 19801,2 and its product was characterized in 1984 as a nuclear protein having gene-activator properties3,4. It participates in long-term mechanisms associated with neuron stimulation. Indeed, changes in neuronal activity lead to second messenger signaling cascades that induce the expression of the immediate early gene c-fos, which induces the production of the transcription factor c-FOS. The latter initiates the expression of late genes and thus participates in adaptive responses of the nervous system to many different types of stimuli4. Thus, since the end of 19805,6, c-FOS protein detection has been frequently used to study the effects of exogenous factors on gene transcription in general4 and on the activity of the central nervous system (CNS) for mapping out neuronal pathways involved in different physiological conditions.
Basal c-fos expression has been studied in various species including mice, rat, cat, monkey, and human4. Thereby, the kinetics of its expression is relatively well known. The transcription activation is rapid (5 to 20 min)7,8, and the mRNA accumulation reaches a maximum between 30 and 45 min after the onset of stimulation9 and declines with a short half-life of 12 min. The c-FOS protein synthesis follows mRNA accumulation and could be detected by immunohistochemistry at 20 to 90 min post stimulation6.
Analysis of c-fos expression is classically used in in vivo studies to identify the central respiratory network involved in the ventilatory responses to hypoxia or hypercapnia10-14. More recently, this tool was also used in ex vivo brainstem preparations to explore central respiratory network adaptations to hypoxia or hypercapnia15-18. Indeed, these preparations generate a rhythmic activity classically assimilated to the central respiratory drive19. Thus, this type of preparation has the advantage of being completely deafferented, and therefore, results regarding c-fos expression only reflect the consequences of a central stimulation without any intervention of peripheral structures.
The c-FOS detection could be made by immunohistochemical or immunohistofluorescence approaches. Indirect immunodetection necessitates the use of a primary antibody against c-FOS and a secondary antibody directed against the species in which the primary antibody was produced. For the immunohistochemical method, the secondary antibody is conjugated with an enzyme (peroxidase, for example) that acts on a substrate (H2O2 for the peroxidase). The product of the enzymatic reaction is developed by a chromogen (3.3-diaminobenzidine tetrahydrochloride), which stains it and can be observed under light microscopy. The reaction could be reinforced using nickel ammonium sulphate. These methods allow the detection of actives neurons during different physiological challenges and therefore the identification and/or the mapping of peripheral and central pathways involved in the consecutive physiological responses.
Note: c-FOS detection is a standardized procedure involving several steps (Figure 1). All experiments were performed on rats or mice. Experimental protocols were approved by the Ethics Committee in Animal Experiment Charles Darwin (Ce5/2011/05), done in accordance with the European Communities Council Directive of September 22, 2010 (2010/63/EU) for animal care, and conducted in accordance with French laws for animal care.
1. Preparation of Solutions
2. c-fos Induction and Tissue Processing In Vivo
Note: Experiments were performed in rats (Sprague Dawley) or mice (C57BL/6).
3. c-fos induction and Tissue Processing Ex Vivo
Note: Experiments were performed in newborn rats or mice only.
4. Brainstem Sectioning
Note: From this step to the end, the protocol is strictly the same for in vivo and ex vivo inductions.
5. Immunohistological Procedures (Table 1)
Note: Throughout the procedure, the sections remain in the well inserts.
6. Data and Statistical Analysis
The c-FOS detection is a useful tool that allows identifying groups of activated cells under specific conditions such as hypoxia and hypercapnia in vivo (Figure 2A) or in situations that mimic these conditions ex vivo (Figure 2B). In vivo, newborn, young, or adult rodents were placed in an airtight box in which the gaseous environment is continually renewed by a gas mixture with a composition precisely defined for 30 to 180...
C-fos is an immediate early gene, and the detection of its product, the c-FOS protein, is classically used to identify neuronal populations involved in specific respiratory responses in vivo11,13,25,28 and ex vivo16-18,27,32,33.
Critical Steps Within the Protocol
Be careful during the perfusion step. The 4% PFA solution must be well prepared and the fixation and post-fixation steps m...
The authors have nothing to disclose.
The University Paris 13 supported this work. ASPT was supported by a University Paris 13 fellowship and the "Association Française pour le Syndrome d'Ondine". FJ was supported by a Laboratory of Excellence GR-Ex fellowship. The GR-Ex (ref ANR-11-LABX-0051) is funded by the program "Investissement d'avenir" of the French National Research agency (ref ANR-11-IDEX-0005-02).
Name | Company | Catalog Number | Comments |
Cell culture plate 12-well | Costa | 35/3 | |
15 mm Netwell inserts with mesh polyester membrane | Corning | 3477 | The 15mm diameter well inserts have 74µm polyester mesh bottoms attached to polystyrene inserts |
Primary antibody (rabbit polyclonal antibody against the c-Fos protein) | Santa Cruz Biotechnology | sc-52 | |
Vectastain Elite ABC KIT | Vector laboratories | PK-6101 | |
(Rabbit IgG-secondary antibody) | |||
NaH2PO4*2H2O | Sigma | 71505 | |
Na2HPO4 | Sigma | S7907 | |
Paraformaldehyde | Sigma | P6148 | |
NaOH 0.1N | Sigma | 43617 | |
Polyvinyl-Pyrrolidone | Sigma | PVP-360 | |
Sucrose | Sigma | S7903 | |
NaCl | Sigma | S7653 | |
Ethylene-glycol | Sigma | 33068 | |
Triton X100 | Sigma | T8787 | |
Trisma HCl | Sigma | T5941 | |
Trisma Base | Sigma | T1503 | |
3.3-diaminobenzidine tetrahydrochloride | Rockland | DAB50 | |
Nickel ammonium sulphate | Alfa Aesar | 12519 | |
H2O2 | Sigma | H1009 | |
Xylene | Sigma | 33817 | |
Entellan Neo | Merck Millipore | 107961 | |
Slide | Thermo-scientific | 1014356190 | Superfrost ultraplus |
Cover glass | Thermo-scientific | Q10143263NR1 | 24 x 60mm |
BSA | Sigma | A2153 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone