JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

A procedure for the isolation of EOB-DTPA and subsequent complexation with natural Ga(III) and 68Ga is presented herein, as well as a thorough analysis of all compounds and investigations on labeling efficiency, in vitro stability and the n-octanol/water distribution coefficient of the radiolabeled complex.

Streszczenie

We demonstrate a method for the isolation of EOB-DTPA (3,6,9-triaza-3,6,9-tris(carboxymethyl)-4-(ethoxybenzyl)-undecanedioic acid) from its Gd(III) complex and protocols for the preparation of its novel non-radioactive, i.e., natural Ga(III) as well as radioactive 68Ga complex. The ligand as well as the Ga(III) complex were characterized by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry and elemental analysis. 68Ga was obtained by a standard elution method from a 68Ge/68Ga generator. Experiments to evaluate the 68Ga-labeling efficiency of EOB-DTPA at pH 3.8–4.0 were performed. Established analysis techniques radio TLC (thin layer chromatography) and radio HPLC (high performance liquid chromatography) were used to determine the radiochemical purity of the tracer. As a first investigation of the 68Ga tracers' lipophilicity the n-octanol/water distribution coefficient of 68Ga species present in a pH 7.4 solution was determined by an extraction method. In vitro stability measurements of the tracer in various media at physiological pH were performed, revealing different rates of decomposition.

Wprowadzenie

Gadoxetic acid, a common name for the Gd(III) complex of the ligand EOB-DTPA1, is a frequently used contrast agent in hepatobiliary magnetic resonance imaging (MRI).2,3 Due to its specific uptake by liver hepatocytes and high percentage of hepatobiliary excretion it enables the localization of focal lesions and hepatic tumors.2-5 However, certain limitations of the MRI technique (e.g., toxicity of the contrast agents, limited applicability in patients with claustrophobia or metal implants) call for an alternative diagnostic tool.

Positron emission tomography (PET) is a molecular imaging method, wherein a small amount of a radioactive substance (tracer) is administered, upon which its distribution in the body is recorded by a PET scanner.6 PET is a dynamic method that allows for high spatial and temporal resolution of images as well as quantification of the results, without having to deal with the side-effects of MRI contrast agents. The informative value of the obtained metabolic information can be further increased by combination with anatomical data received from additional imaging methods, as most commonly achieved by hybrid imaging with computed tomography (CT) in PET/CT scanners.

The chemical structure of a tracer suitable for PET must include a radioactive isotope serving as positron emitter. Positrons have a short life-span since they almost immediately annihilate with electrons of the atom shells of surrounding tissue. By annihilation two 511 keV gamma photons with opposite direction of movement are emitted, which are recorded by the PET scanner.7,8 To form a tracer, PET nuclides may be bound covalently to a molecule, as is the case in 2-deoxy-2-[18F]fluoroglucose (FDG), the most extensively used PET tracer.7 However, a nuclide may also form coordinative bonds to one or several ligands (e.g., [68Ga]-DOTATOC9,10) or be applied as dissolved inorganic salts (e.g., [18F] sodium fluoride11). Altogether, the structure of the tracer is crucial as it determines its biodistribution, metabolism and excretion behavior.

A suitable PET nuclide should combine favorable characteristics like convenient positron energy and availability as well as a half-life adequate for the intended investigation. The 68Ga nuclide has become an essential force in the field of PET over the last two decades.12,13 This is mainly due to its availability through a generator system, which allows on-site labeling independently from the vicinity of a cyclotron. In a generator, the mother nuclide 68Ge is absorbed on a column from which the daughter nuclide 68Ga is eluted and subsequently labeled to a suitable chelator.6,14 Since the 68Ga nuclide exists as a trivalent cation just like Gd(III)10,13, chelating EOB-DTPA with 68Ga instead would yield a complex with the same overall negative charge as gadoxetic acid. Accordingly, that 68Ga tracer might combine a similar characteristic liver specificity with the suitability for PET imaging. Although gadoxetic acid is purchased and administered as disodium salt, in the following context we will refer to it as Gd[EOB-DTPA] and to the non-radioactive Ga(III) complex as Ga[EOB-DTPA], or 68Ga[EOB-DTPA] in case of the radiolabeled component for the sake of convenience.

To evaluate their applicability as tracers for PET, radioactive metal complexes need to be examined extensively in in vitro, in vivo or ex vivo experiments first. To determine the suitability for a respective medical problem, various tracer characteristics like biodistribution behavior and clearance profile, stability, organ specificity and cell or tissue uptake need to be investigated. Due to their non-invasive character, in vitro determinations are often performed prior to in vivo experiments. It is generally acknowledged that DTPA and its derivatives are of limited suitability as chelators for 68Ga due to these complexes lacking kinetic inertness, resulting in comparably fast decomposition when administered in vivo.14-20 This is primarily caused by apo-transferrin acting as a competitor for 68Ga in plasma. Nevertheless, we investigated this new tracer concerning its possible application in hepatobiliary imaging, wherein diagnostic information may be provided within minutes post-injection3,4,21-23, thereby not necessarily requiring long-term tracer stability. For this purpose we isolated EOB-DTPA from gadoxetic acid and initially performed the complexation with natural Ga(III), which exists as mixture of two stable isotopes, 69Ga and 71Ga. The complex thus obtained served as non-radioactive standard for the following chelation of 68Ga. We used established methods and simultaneously evaluated their suitability for determining the 68Galabeling efficiency of EOB-DTPA and to investigate the lipophilicity of the new 68Ga tracer and its stability in different media.

Protokół

1. Preparation of EOB-DTPA and Ga[EOB-DTPA]

Caution: Please consult all relevant material safety data sheets (MSDS) of the used organic solvents, acids and alkalines before use. Perform all steps in a fume hood and use personal protective equipment (safety glasses, gloves, lab coat).

  1. Isolation of EOB-DTPA from gadoxetic acid
    1. Put 3 ml of 0.25 M gadoxetic acid injectable solution into a flask. Add 500 mg (5.6 mmol) of oxalic acid to the stirred solution.
    2. After stirring for 1 hr, filter the suspension through a frit using reduced pressure. Wash the residue three times with 3 ml of water, respectively.
    3. Combine the aqueous filtrates and equip the solution with a pH electrode. Add 12 M hydrochloric acid to the filtrate until the pH is about -0.1.
    4. Remove the solvent in vacuo to yield a colorless residue. Store under inert gas.
    5. Wash the residue thoroughly (at least three times) with ethyl acetate to remove the excess of oxalic acid. Dry the residue in vacuo.
    6. Redissolve the residue in 2 ml of water at room temperature and then cool the solution in an ice bath. Without removing the ice bath, add 0.5 M aqueous sodium hydroxide solution dropwise until the formation of a colorless gluey solid is observed.
    7. Remove the water by decantation. Wash the solid two more times with 1 ml of cold water. Dry the solid in vacuo to yield the first product fraction.
    8. Isolate a second product fraction from the combined fractions of decanted water via column chromatography (silica, methanol/water 4/1).24 Remove the solvent in vacuo.
    9. If the thus obtained solid is not pure white, redissolve it in 1 ml of water, add 10 ml of ethanol and subsequently 10 ml of diethyl ether to precipitate the product. Filter through a frit using reduced pressure and dry in vacuo.
    10. Combine both solid fractions of EOB-DTPA and perform NMR spectroscopic,25 mass spectrometric26 and elemental27 analyses.
  2. Synthesis of Ga[EOB-DTPA]
    CAUTION: Store solid Ga(III) chloride under a dry inert atmosphere, since upon contact with air, moisture or grease decomposition takes place, resulting in corrosive fumes and formation of yellow, brown or black impurities.
    1. Prepare a 0.11 M stock solution by dissolving 1.94 g (11.0 mmol) of Ga(III) chloride in 100 ml of water. Dilute 1 ml of 25% aqueous ammonia solution with 4 ml of water.
    2. Dissolve 80 mg (0.15 mmol) of EOB-DTPA in a flask in 10 ml of water. If necessary, heat the solvent to achieve complete dissolution.
    3. Add 1.4 ml (0.15 mmol) of the Ga(III) chloride stock solution. Equip the flask with a stirrer and pH-electrode. Add diluted aqueous ammonia solution dropwise until the pH of the solution is approximately 4.1. Stir at room temperature for 30 min.
    4. Remove the solvent in vacuo. Place the residue in a flask, equipped with a stillhead with a central and parallel side neck. Equip the central neck with a cooling finger and the side neck with a vacuum pump outlet
    5. Heat the residue under reduced pressure (125 °C, 0.6 mbar). Periodically remove sublimated ammonium chloride (visible as white coating of the glass surface) from the cooling finger and still head, as well as from the upper parts of the flask with a slightly wet cloth. Continue the process until there is no visible formation of new sublimate.
    6. To remove final traces of ammonium chloride wash the residue three times with 0.5 ml of hot methanol, respectively. Dry the colorless residue in vacuo. Perform NMR spectroscopic,25 mass spectrometric26 and elemental27 analyses.

2. General Labeling Procedure

CAUTION: All experiments including direct or indirect contact with radioactive substances must be undertaken by trained personnel only. Please use appropriate shielding equipment. Collect any radioactive waste separately and store and dispose in accordance with valid regulations.

  1. Elution of the generator
    Note: A 40 mCi 68Ge/68Ga generator with the mother nuclide bound as oxide on dodecyl-3,4,5-trihydroxybenzoate silica was used. Elution and purification may be performed manually or, as was the case in this procedure, as a combined automated process using a peristaltic pump and dispenser unit.
    1. Prepare solutions of 5.5 M, 1.0 M and 0.05 M hydrochloric acid. Prepare a solution of 5.0 M sodium chloride containing 25 µl of 5.5 M hydrochloric acid per ml. Prepare a buffer solution of pH 4.6 by combining 4.1 g sodium acetate, 1 ml HCl (30%) and 2.5 ml glacial acetic acid and diluting the mixture with water to 50 ml.
    2. Precondition the PS-H+ cartridge by flushing it slowly with 1 ml of 1.0 M hydrochloric acid and subsequently 5 ml of water.
    3. Elute the silica column of the generator with 4 ml 0.05 M HCl.12 Load the 68Ga eluate onto the PS-H+ cartridge.
    4. Flush the cartridge with 5 ml of water and subsequently dry it with 5 ml of air. Elute the 68Ga from the cartridge with 1 ml 5.0 M acidified sodium chloride solution.28
  2. Labeling of EOB-DTPA with 68Ga
    1. Dissolve 1 mg (1.9 µmol) of EOB-DTPA in 1 ml of water. From this solution take 100 µl (0.19 µmol) and dilute them with 9.9 ml of water to prepare a 19 µM (10 µg/ml) stock solution of EOB-DTPA.
    2. Remove 50 µl (equaling 22-29 MBq) of the solution containing 68Ga and put into a vial. Add 50 µl (0.5 µg) of a 19 mM stock solution of EOB-DTPA and 300 µl of buffer to raise the pH to 4.0. Shake briefly and incubate the solution at room temperature for 5 min. Remove an aliquot of 1-5 µl and put to HPLC or TLC analysis.
    3. Perform radio HPLC analysis on a reversed phase (RP) C18 column.29 Use the following mobile phase: A - water/trifluoroacetic acid (99.9%/0.1%), B - acetonitrile/trifluoroacetic acid (99.9%/0.1%), gradient: 06 min 80% A → 0% A (0.5 ml/min), 610 min 0% A (0.5 ml/min).
    4. Determine the peak intensities of the radio HPLC signals as area under curve. Calculate the labeling yield as radiochemical purity (RCP) of the tracer as follows:
      RCP = AGa-EOB-DTPA/(AGa + AGa-EOB-DTPA) ∙ 100%
      AGa-EOB-DTPA: area under curve of 68Ga[EOB-DTPA]
      AGa: area under curve of free 68Ga

3. Labeling Efficiency

  1. Perform labeling procedures as described in section 2. Use a consistent range of starting activity of 68Ga eluate, e.g., 22-29 MBq (40-140 µl, depending on the freshness of the eluate).
  2. Add the required amount of buffer solution to adjust the pH to 3.8-4.0 (40-190 µl, depending on the volume of 68Ga eluate). Add the required amount of ligand stock solution (10-70 µl of a 19 mM solution).
  3. Add the required amounts of water to adjust the overall volume of each labeling probe to 1.75 ml. Mix thoroughly and let the sample stand for 5 min at room temperature. Perform HPLC analysis as described in section 2 to determine the labeling yield.
  4. Perform labeling procedures with amounts of ligand between 0.1 µg and 0.7 µg in steps of 0.1 µg. Perform experiments in triplicates for each ligand concentration. Calculate the mean yield and standard deviation.

4. In Vitro Stability

  1. General procedure and preparations
    1. Dissolve a tablet of phosphate buffered saline (PBS) in 200 ml of deionized water to prepare a PBS stock solution with a phosphate concentration of 10 mM.
    2. Perform labeling of 22-29 MBq 68Ga with 0.5 µl of EOB-DTPA stock solution, as described in section 2. Depending on the volume of the 68Ga eluate, adjust the amount of buffer, as described in section 3. Withdraw samples of labeling solution containing 6-12 MBq of tracer to perform stability measurements.
    3. Perform radio TLC analysis on 80 mm silica gel coated aluminum plates using 0.1 M aqueous sodium citrate as eluent and analyze the plates with a TLC radioactivity scanner.30 Determine the intensities of the TLC signals as area under curve. Calculate the RCP of the tracer as follows:
      RCP = AGa-EOB-DTPA/(AGa-free + AGa-EOB-DTPA + AGa-colloidal) ∙ 100%
      AGa-EOB-DTPA: area under curve of 68Ga[EOB-DTPA]
      AGa-free: area under curve of free 68Ga
      AGa-colloidal: area under curve of colloidal 68Ga
    4. Calculate RCPt/RCP0 for every time point. Plot the thus standardized RCP vs. time difference since the starting point t = 0 min.
      RCPt = RCP of 68Ga[EOB-DTPA] at time point t.
      RCP0 = RCP of 68Ga[EOB-DTPA] at t = 0 min.
  2. Stability in phosphate buffered saline (A)
    1. To 65 µl of labeling solution add 150 µl of PBS stock solution and 60 µl of sodium hydroxide solution (0.1 M) to raise the pH to 7.4. Mix thoroughly.
    2. Remove an aliquot of 1-5 µl to perform TLC analysis ('starting point'). Immediately store the solution in an incubator at 37 °C and remove aliquots to perform TLC analysis at representative time points over 3 hr.
  3. Stability towards excess of apo-transferrin in PBS (B)
    1. To 120 µl of labeling solution add 50 µl of PBS stock solution and 430 µl of sodium hydroxide solution (0.1 M) to raise the pH to 7.4. Add 40 µl of a solution of apo-transferrin (25 mg/ml). Mix thoroughly.
    2. Remove an aliquot of 1-5 µl to perform TLC analysis ('starting point'). Immediately store the solution in an incubator at 37 °C and remove aliquots to perform TLC analysis at representative time points over 3 hr.
  4. Stability in human serum (C)
    1. To 500 µl of human serum add 25 µl of labeling solution and 45 µl of sodium hydroxide solution (0.1 M) to raise the pH to 7.4. Mix thoroughly.
    2. Remove an aliquot of 1-5 µl to perform TLC analysis ('starting point'). Immediately store the solution in an incubator at 37 °C and remove aliquots to perform TLC analysis at representative time points over 3 hr.

5. Determination of Distribution Coefficient LogD

  1. Perform labeling procedures as described in section 2. To 50 µl of labeling solution add 20 µl of PBS stock solution and 170 µl of sodium hydroxide solution (0.1 M) to raise the pH to 7.4.
  2. Withdraw 200 µl from that solution and put it into a plastic V-vial. Add 200 µl of n-octanol. Close the vial and vortex for 2 min. Then centrifuge the sample at 1,600 x g for 5 min.
  3. Remove triplicates of 40 µl from the n-octanol phase and the aqueous phase each and put them in separate V-vials. Be careful not to mix up the layers.
  4. Measure the activity of each sample in a gamma well counter for 30 sec. For each sample immediately repeat the measurement twice and thereof calculate the mean activity Ᾱt in counts per minute (cpm). List the thus gained Ᾱt,W1, Ᾱt,W2 and Ᾱt,W3 (activities in aqueous samples) and Ᾱt,O1, Ᾱt,O2, Ᾱt,O3 (activities in n-octanol) along with the respective time point t of their determination.
  5. Define the time point of the measurement of the last sample as t0. Determine and list Δt in min by calculating Δt = t-t0. Perform decay correction of Ᾱt, using the following formula:
    0 = Ᾱt · 2(Δt/68 min).
  6. Calculate Ᾱ0,W as the mean of Ᾱ0,W1, Ᾱ0,W2 and Ᾱ0,W3 as well as Ᾱ0,O as the mean of Ᾱ0,O1, Ᾱ0,O2 and Ᾱ0,O3. Calculate logD using the following formula:
    logD = log[(Ᾱ0,O · 40 µg)/(Ᾱ0,W · 33 µg)].
  7. Perform the entire experiment in triplicates and calculate the mean logD along with its standard deviation.

Wyniki

The ligand EOB-DTPA and the non-radioactive Ga(III) complex were analyzed via 1H and 13C{1H} NMR spectroscopy, mass spectrometry and elemental analysis. The results listed in Table 1 and depicted in Figures 1-6 verify the purity of the substances.

Elution of the 68Ge/68Ga generator yielded solutions of 400-600 MBq 68Ga. T...

Dyskusje

EOB-DTPA is accessible through a multi-step synthesis33 but may just as well be isolated from available contrast agents containing gadoxetic acid. For this purpose, the central Gd(III) ion can be precipitated with an excess of oxalic acid. After removing Gd(III) oxalate and oxalic acid the ligand can be isolated by precipitation in cold water at pH 1.5. However, in order to enhance yields column chromatography of the filtrate can be performed instead or as a follow-up procedure. Either method yields the analyt...

Ujawnienia

The authors have nothing to disclose.

Podziękowania

The authors have no acknowledgements.

Materiały

NameCompanyCatalog NumberComments
primovistBayer-0.25 M
gallium(III) chlorideSigma-Aldrich Co.450898
water (deionized)--tap water deionizing equipment by Auma-Tec GmbH
hydrochloric acid 12 MVWR20252.29
sodium hydroxidePolskie Odczynniki Chemiczne S.A.810925429
oxalic acidSigma-Aldrich Co.75688
ethyl acetateBrenntag GmbH10010447
silica gelMerck KGaA1.10832.9025Geduran Si 60 0.063-0.2 mm
TLC silica gel 60 F254Merck KGaA1.16834.0001
methanolVWR20903.55
ethanolBrenntag GmbH10018366
eiethyletherVWR23807.468stored over KOH plates
ammonia solution (25%)VWR1133.1
pH electrodeVWR662-1657
stirring and heating unitHeidolph505-20000-00
pumpIlmvac GmbH322002
frit-custom design
NMR spectrometerBruker Coorporation-Ultra Shield 400
mass spectrometerThermo Fisher Scientific Inc.-
elemental analyserHekatech GmbH Analysentechnik-EuroVector EA 3000 CHNS
deuterated water D2Oeuriso-topD21499.90% D
Material/Equipment required for labeling procedures
68Ge/68Ga generatorITG Isotope Technologies Garching GmbHA150
pump and dispenser systemScintomics GmbH-Variosystem
hydrochloric acid 30% (suprapur)Merck KGaA1.00318.1000
water (ultrapur)Merck KGaA1.01262.1000
sodium chloride (suprapur)Merck KGaA1.06406.0500
sodium acetate (suprapur)Merck KGaA1.06264.0050
glacial acetic acid (suprapur)Merck KGaA1.00066.0250
sodium citrate dihydrateVEB Laborchemie Apolda10782>98.5%
PS-H+ Cartridge (S)Macherey-Nagel731867Chromafix
apo-TransferrinSigma-Aldrich Co.T2036
PBS buffer (tablets)Sigma-Aldrich Co.79382
human serumSigma-Aldrich Co.H4522from human male AB plasma
flasks, columns, etc.custom design
pH electrodeKnick Elektronische Messgeräte GmbH & Co. KG765-Set
binary pump (HPLC)Hewlett-PackardG1312A (HP 1100)
UV Vis detector (HPLC)Hewlett-PackardG1315A (HP 1100)
radioactive detector (HPLC)EGRC Berthold
HPLC C-18-PFP columnAdvanced Chromatography Technologies Ltd.ACE-1110-1503/A100528
HPLC glass vialsGTG Glastechnik Graefenroda GmbH8004-HP-H/i3µ
pipetteEppendorf-
plastic vialsSarstedt AG & Co.6542.007
plastic vialsGreiner Bio-One International GmbH717201
activimeterMED Nuklear-Medizintechnik Dresden GmbH-Isomed 2010
tweezerscustom design
incubatorHeraeus Instruments GmbH51008815
vortex mixerFisons-Whirlimixer
centrifugeHeraeus Instruments GmbH75003360
gamma well counterMED Nuklear-Medizintechnik Dresden GmbH-Isomed 2100
water for chromatographyMerck KGaA1.15333.2500
acetonitrile for chromatographyMerck KGaA1.00030.2500
trifluoroacetic acidSigma-Aldrich91707
TLC radioactivity scannerraytest Isotopenmessgeräte GmbHB00003875equipped with beta plastic detector

Odniesienia

  1. Weinmann, H. J., et al. A new lipophilic gadolinium chelate as a tissue-specific contrast medium for MRI. Magn. Reson. Med. 22, 233-237 (1991).
  2. Stroszczynski, C., et al. Aktueller Stand der MRT-Diagnostik mit leberspezifischen Kontrastmitteln. Radiologe. 44, 1185 (2004).
  3. Van Beers, B. E., Pastor, C. M., Hussain, H. K. Primovist, Eovist - what to expect. J. Hepatol. 57, 421-429 (2012).
  4. Zech, C. J., Herrmann, K. A., Reiser, M. F., Schoenberg, S. O. MR Imaging in Patients with Suspected Liver Metastases: Value of Liver-specific Contrast Agent Gd-EOB-DTPA. Magn. Reson. Med. Sci. 6, 43-52 (2007).
  5. Leonhardt, M., et al. Hepatic Uptake of the Magnetic Resonance Imaging Contrast Agent Gd-EOB-DTPA: Role of Human Organic Anion Transporters. Drug Metab. Dispos. 38, 1024-1028 (2010).
  6. Wadas, T. J., Wong, E. H., Weisman, G. R., Anderson, C. Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease. J. Chem. Rev. 110, 2858-2902 (2010).
  7. Ametamey, S. M., Honer, M., Schubiger, P. A. Molecular Imaging with PET. Chem. Rev. 108, 1501-1516 (2008).
  8. Cutler, C. S., Hennkens, H. M., Sisay, N., Huclier-Markai, S., Jurisson, S. S. Radiometals for Combined Imaging and Therapy. Chem. Rev. 113, 858-883 (2013).
  9. Henze, M., et al. PET Imaging of Somatostatin Receptors Using [68GA]DOTA-D-Phe1-Tyr3-Octreotide: First Results in Patients with Meningiomas. J. Nucl. Med. 42, 1053-1056 (2001).
  10. Hofmann, M., et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur. J. Nucl. Med. 28, 1751-1757 (2001).
  11. Blau, M., Nagler, W., Bender, M. A. Fluorine-18: a new isotope for bone scanning. J. Nucl. Med. 3, 332-334 (1962).
  12. Green, M. A., Welch, M. J. Gallium Radiopharmaceutical Chemistry. Int. J. Radiat. Appl. Instrum. B. 16, 435-448 (1989).
  13. Rösch, F. Past, present and future of 68Ge/68Ga generators. Appl. Radiat. Isot. 76, 24-30 (2013).
  14. Liu, S. The role of coordination chemistry in the development of target-specific radiopharmaceuticals. Chem. Soc. Rev. 33, 445-461 (2004).
  15. Haubner, R., et al. Development of (68)Ga-labelled DTPA galactosyl human serum albumin for liver function imaging. Eur. J. Nucl. Med. Mol. Imaging. 40 (68), 1245-1255 (2013).
  16. Yang, W., Zhang, X., Liu, Y. Asialoglycoprotein Receptor-Targeted Radiopharmaceuticals for Measurement of Liver Function. Curr. Med. Chem. 21, 4-23 (2014).
  17. Chauhan, K., et al. 68Ga based probe for Alzheimer's disease: synthesis and preclinical evaluation of homodimeric chalcone in β-amyloid imaging. Org. Biomol. Chem. 12, 7328-7337 (2014).
  18. Chakravarty, R., Chakraborty, S., Dash, A., Pillai, M. R. A. Detailed evaluation on the effect of metal ion impurities on complexation of generator eluted 68Ga with different bifunctional chelators. Nucl. Med. Biol. 40, 197-205 (2013).
  19. Clevette, D. J., Orvig, C. Comparison of ligands of differing denticity and basicity for the in vivo chelation of aluminum and gallium. Polyhedron. 9, 151-161 (1990).
  20. Prinsen, K., et al. Development and evaluation of a 68Ga labeled pamoic acid derivative for in vivo visualization of necrosis using positron emission tomography. Bioorg. Med. Chem. 18, 5274-5281 (2010).
  21. Vogl, T. J., et al. Liver tumors: comparison of MR imaging with Gd-EOB-DTPA and Gd-DTPA. Radiology. 200, 59-67 (1996).
  22. Reimer, P., et al. Phase II clinical evaluation of Gd-EOB-DTPA: dose, safety aspects, and pulse sequence. Radiology. , 177-183 (1996).
  23. Ba-Ssalamah, A., et al. MRT der Leber. Radiologe. 44, 1170-1184 (2004).
  24. Scott, R. P. W. . Journal of Chromatography Library. 22A, A137-A160 (1983).
  25. Reichenbaecher, M., Popp, J. . Strukturanalytik organischer und anorganischer Verbindungen. , (2007).
  26. Gross, J. H. . Mass Spectrometry: A Textbook. , (2004).
  27. Ma, T. S., Rittner, R. C. . Modern Organic Elemental Analysis. , (1979).
  28. Mueller, D., et al. Simplified NaCl Based 68Ga Concentration and Labeling Procedure for Rapid Synthesis of 68Ga Radiopharmaceuticals in High Radiochemical Purity. Bioconjugate Chem. 23, 1712-1717 (2012).
  29. Roberts, T. R. Radio-column chromatography. Journal of Chromatography Library. 14, 103-132 (1978).
  30. Roberts, T. R. Radio-thin-layer chromatography. Journal of Chromatography Library. 14, 45-83 (1978).
  31. Green, M. A., Welch, M. J. Gallium radiopharmaceutical chemistry. Nucl. Med. Biol. 16, 435-448 (1989).
  32. Notni, J., Plutnar, J., Wester, H. J. Bone-seeking TRAP conjugates: surprising observations and their implications on the development of gallium-68-labeled bisphosphonates. EJNMMI Res. 2, 13 (2012).
  33. Schmitt-Willich, H., et al. Synthesis and Physicochemical Characterization of a New Gadolinium Chelate: The Liver-Specific Magnetic Resonance Imaging Contrast Agent Gd-EOB-DTPA. Inorg. Chem. 38, 1134-1144 (1999).
  34. Zhernosekov, K., Nikula, T. 68Ga generator for positron emission tomography. , (2012).
  35. Simecek, J., Hermann, P., Wester, H. J., Notni, J. How is 68Ga Labeling of Macrocyclic Chelators Influenced by Metal Ion Contaminants in 68Ge/68Ga Generator Eluates?. ChemMedChem. 8, 95-103 (2013).
  36. Baur, B., et al. Synthesis, Radiolabelling and In Vitro Characterization of the Gallium-68-, Yttrium-90- and Lutetium-177-Labelled PSMA Ligand, CHX-A''-DTPA-DUPA-Pep. Pharmaceuticals (Basel). 7, 517-529 (2014).
  37. Boros, E., et al. RGD conjugates of the H2dedpa scaffold: synthesis, labeling and imaging with 68Ga. Nucl. Med. Biol. 39, 785-794 (2012).
  38. Beck, W. S. . Hematology. , (1998).
  39. Patel, V., Morrissey, J. . Practical and Professional Clinical Skills. , (2001).
  40. Bartke, A., Constanti, A. . Basic Endocrinology. , (1998).
  41. Bernstein, L. R. Mechanisms of Therapeutic Activity for Gallium. Pharmacol. Rev. 50, 665-682 (1998).
  42. Clausen, J., Edeling, C. J., Fogh, J. 67Ga Binding to Human Serum Proteins and Tumor Components. Cancer Res. 34, 1931-1937 (1974).
  43. Dumont, R. A., et al. Novel 64Cu- and 68Ga-Labeled RGD conjugates show improved PET imaging of αvβ3 integrin expression and facile radiosynthesis [Erratum to document cited in CA156:116856. J. Nucl. Med. 52, 1498 (2011).
  44. Pohle, K., et al. 68Ga-NODAGA-RGD is a suitable substitute for 18F-Galacto-RGD and can be produced with high specific activity in a cGMP/GRP compliant automated process. Nucl. Med. Biol. 39, 777-784 (2012).
  45. Notni, J., Pohle, K., Wester, H. J. Be spoilt for choice with radiolabelled RGD peptides: Preclinical evaluation of 68 Ga-TRAP(RGD)3. Nucl. Med. Biol. 40, 33-41 (2013).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Ga III ComplexEOB DTPA68Ga RadiolabelingGallium 68 Tracer ChemistryLabeling ConditionsTracer StabilityLipophilicityGadoxetic AcidOxalic AcidHydrochloric AcidSodium HydroxideGallium TrichlorideAmmoniaAmmonium ChloridePSH Plus CartridgeSilica Column Generator

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone