Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here we demonstrate how to induce and monitor regeneration in the Starlet Sea Anemone Nematostella vectensis, a model cnidarian anthozoan. We demonstrate how to amputate and categorize regeneration using a morphological staging system, and we use this system to reveal a requirement for autophagy in regenerating polyp structures.
Cnidarians, and specifically Hydra, were the first animals shown to regenerate damaged or severed structures, and indeed such studies arguably launched modern biological inquiry through the work of Trembley more than 250 years ago. Presently the study of regeneration has seen a resurgence using both "classic" regenerative organisms, such as the Hydra, planaria and Urodeles, as well as a widening spectrum of species spanning the range of metazoa, from sponges through mammals. Besides its intrinsic interest as a biological phenomenon, understanding how regeneration works in a variety of species will inform us about whether regenerative processes share common features and/or species or context-specific cellular and molecular mechanisms. The starlet sea anemone, Nematostella vectensis, is an emerging model organism for regeneration. Like Hydra, Nematostella is a member of the ancient phylum, cnidaria, but within the class anthozoa, a sister clade to the hydrozoa that is evolutionarily more basal. Thus aspects of regeneration in Nematostella will be interesting to compare and contrast with those of Hydra and other cnidarians. In this article, we present a method to bisect, observe and classify regeneration of the aboral end of the Nematostella adult, which is called the physa. The physa naturally undergoes fission as a means of asexual reproduction, and either natural fission or manual amputation of the physa triggers re-growth and reformation of complex morphologies. Here we have codified these simple morphological changes in a Nematostella Regeneration Staging System (the NRSS). We use the NRSS to test the effects of chloroquine, an inhibitor of lysosomal function that blocks autophagy. The results show that the regeneration of polyp structures, particularly the mesenteries, is abnormal when autophagy is inhibited.
The observation of regeneration in a single hydra was the seminal event in the advent of biology as an experimental science1,2. Regeneration remains a phenomenon of extraordinarily broad appeal to biologist and lay person alike. The potential for developmental biologists, clinicians, biomedical scientists and tissue engineers to understand and overcome the limits on human regeneration makes regeneration biology more than intrinsically interesting.
Now, with the use of emerging technologies such as genome sequencing and gain and loss of function tools, the field is poised to tease apart regenerative mechanisms and to ultimately understand how various species can regenerate while others cannot. The degree of commonality in molecular, cellular and morphological responses remains to be elucidated, but so far it appears that the basic responses among animals that can regenerate is more similar than would have been imagined only a decade ago3.
Cnidarians in particular are facile at regenerating almost all of their body parts amid a broad spectrum of morphological diversity. From the solitary fresh water polyp, Hydra along with the tiny marine polyps that build immense coral reefs, to the complex colonial siphonophores, such as the Portuguese Man-O-War, regeneration is often a mode of reproduction, in addition to a mechanism for repairing or reforming damaged or lost body parts resulting from injury and predation. Whether the diverse species of Cnidaria use similar or different mechanisms for regeneration is a fundamentally interesting question4-6.
We, and others have been developing the anthozoan, Nematostella vectensis as a model for regeneration7-17. We recently developed a staging system for describing regeneration of an entire body from a morphologically uniform piece of tissue bisected from the aboral end of the polyp10. While Nematostella polyps can regenerate when bisected at any level, we chose to cut adults at an aboral position in the most morphologically simple region, the physa, in part because this is close to the normal plane of natural asexual fission18, and also because it permits observation and molecular analyses of how an entire body is reassembled from the simplest morphological components.
The Nematostella Regeneration Staging System (NRSS) provides a relatively simple set of morphological benchmarks that could be used to score the progress of any aspect of regeneration by an amputated physa, under normal culture conditions or experimentally perturbed situations such as small molecule treatments, genetic manipulation, or environmental alteration. As anticipated, the NRSS is becoming adopted as a morphological scaffold on which the cellular and molecular events of regeneration can be referenced10.
Finally our method of cutting produces a gaping hole several orders of magnitude greater than the pin point puncture used in a recent study17, yet both wounds heal in around 6 hours. Documenting the visually arresting and distinct phases of wound closure should suggest experimental approaches to explain the apparent independence of the size of a wound and the time it takes to close. Thus, a deeper visual understanding of the aboral amputation process, provided by this protocol, will aid further investigations into this model regeneration system and broaden the application of this staging system using Nematostella vectensis.
Access restricted. Please log in or start a trial to view this content.
1. Conditioning of Animals for Temperature, Nutrition and Light/Dark Cycle
2. Selection and Relaxation of Nutritionally Conditioned Animals
3. Amputation
4. Assessing Regeneration with the Nematostella Regeneration Staging System (NRSS)
Access restricted. Please log in or start a trial to view this content.
The progression of morphological events during regeneration in severed physa is shown in Figure 1A, which includes representative views of physa at each NRSS stage. The typical physa cut site is indicated on the adult (arrowheads). The photographs in Figure 1A show progressive regeneration of oral and body structures from freshly cut physa through fully formed polyp. Figure 1B, C show the arrangement of internal septa, the mesenterie...
Access restricted. Please log in or start a trial to view this content.
Use of Nematostella as a model of wound healing and regeneration is becoming increasingly popular. Thus, it is important to be able to visualize the morphological patterns of a particular protocol before effective cellular and molecular analyses can be assigned and compared. Nematostella have a high degree of regenerative "flexibility", being able to reform almost any missing structure amputated at any location, at post-planula stages of life. Thus, various investigators have examined regenerati...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was supported by a New York Stem Cell Science (NYSTEM C028107) Grant to GHT.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Nematostella vectensis, adults | Marine Biological Lab (MBL) | non-profit supplier | |
Glass Culture Dish, 250 mL | Carolina Biological Supply | 741004 | 250 mL |
Glass Culture Dish, 1,500 mL | Carolina Biological Supply | 741006 | 1,500 mL |
Polyethylene transfer pipette, 5 mL | USA Scientific | 1022-2500 | narrow bore, graduated |
Polyethylene transfer pipet, tapered | Samco | 202-205 | cut off 1 inch of tip to make wide bore |
Disposable Scalpel | Feather Safety Razor Co. Ltd | no. 10 | blade should be curved |
#5 Dumont Fine point tweezers | Roboz | RS5045 | alternative suppliers available |
Pyrex Petri dish, 100 mm diameter | Corning | 3160 | can substitute other glass Petri plates |
Sterile 6-well plate | Corning Falcon | 353046 | or similar from other manufacturer |
Sterile 12-well plate | Nunc | 150628 | or similar from other manufacturer |
Sterile 24-well plate | Cellstar, Greiner bio-one | 662-160 | or similar from other manufacturer |
Brine shrimp hathery kit | San Francisco Bay; drsfostersmith.com | CD-154005 | option for growing brine shrimp |
pyrex baking dish | common in grocery stores | option for growing brine shrimp | |
artificial seawater mix 50 gal or more | Instant Ocean; drsfoster-smith.com | CD-116528 | others brands may suffice |
Plastic tub for stock ASW preparation | various | common 25 gallon plastic trash can OK | |
Polypropylene Carboy | Carolina Biological Supply | 716391 | For working stock of ASW @ 12 ppt |
Beaker, Graduated, 4,000 mL | PhytoTechnology Laboratories | B199 | For dilution of 36 ppt ASW to 12 ppt |
Stereomicroscope and light source | various | with continuous 1 - 40X magnification |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone