JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here we demonstrate how to induce and monitor regeneration in the Starlet Sea Anemone Nematostella vectensis, a model cnidarian anthozoan. We demonstrate how to amputate and categorize regeneration using a morphological staging system, and we use this system to reveal a requirement for autophagy in regenerating polyp structures.

Abstract

Cnidarians, and specifically Hydra, were the first animals shown to regenerate damaged or severed structures, and indeed such studies arguably launched modern biological inquiry through the work of Trembley more than 250 years ago. Presently the study of regeneration has seen a resurgence using both "classic" regenerative organisms, such as the Hydra, planaria and Urodeles, as well as a widening spectrum of species spanning the range of metazoa, from sponges through mammals. Besides its intrinsic interest as a biological phenomenon, understanding how regeneration works in a variety of species will inform us about whether regenerative processes share common features and/or species or context-specific cellular and molecular mechanisms. The starlet sea anemone, Nematostella vectensis, is an emerging model organism for regeneration. Like Hydra, Nematostella is a member of the ancient phylum, cnidaria, but within the class anthozoa, a sister clade to the hydrozoa that is evolutionarily more basal. Thus aspects of regeneration in Nematostella will be interesting to compare and contrast with those of Hydra and other cnidarians. In this article, we present a method to bisect, observe and classify regeneration of the aboral end of the Nematostella adult, which is called the physa. The physa naturally undergoes fission as a means of asexual reproduction, and either natural fission or manual amputation of the physa triggers re-growth and reformation of complex morphologies. Here we have codified these simple morphological changes in a Nematostella Regeneration Staging System (the NRSS). We use the NRSS to test the effects of chloroquine, an inhibitor of lysosomal function that blocks autophagy. The results show that the regeneration of polyp structures, particularly the mesenteries, is abnormal when autophagy is inhibited.

Introduction

The observation of regeneration in a single hydra was the seminal event in the advent of biology as an experimental science1,2. Regeneration remains a phenomenon of extraordinarily broad appeal to biologist and lay person alike. The potential for developmental biologists, clinicians, biomedical scientists and tissue engineers to understand and overcome the limits on human regeneration makes regeneration biology more than intrinsically interesting.

Now, with the use of emerging technologies such as genome sequencing and gain and loss of function tools, the field is poised to tease apart regenerative mechanisms and to ultimately understand how various species can regenerate while others cannot. The degree of commonality in molecular, cellular and morphological responses remains to be elucidated, but so far it appears that the basic responses among animals that can regenerate is more similar than would have been imagined only a decade ago3.

Cnidarians in particular are facile at regenerating almost all of their body parts amid a broad spectrum of morphological diversity. From the solitary fresh water polyp, Hydra along with the tiny marine polyps that build immense coral reefs, to the complex colonial siphonophores, such as the Portuguese Man-O-War, regeneration is often a mode of reproduction, in addition to a mechanism for repairing or reforming damaged or lost body parts resulting from injury and predation. Whether the diverse species of Cnidaria use similar or different mechanisms for regeneration is a fundamentally interesting question4-6.

We, and others have been developing the anthozoan, Nematostella vectensis as a model for regeneration7-17. We recently developed a staging system for describing regeneration of an entire body from a morphologically uniform piece of tissue bisected from the aboral end of the polyp10. While Nematostella polyps can regenerate when bisected at any level, we chose to cut adults at an aboral position in the most morphologically simple region, the physa, in part because this is close to the normal plane of natural asexual fission18, and also because it permits observation and molecular analyses of how an entire body is reassembled from the simplest morphological components.

The Nematostella Regeneration Staging System (NRSS) provides a relatively simple set of morphological benchmarks that could be used to score the progress of any aspect of regeneration by an amputated physa, under normal culture conditions or experimentally perturbed situations such as small molecule treatments, genetic manipulation, or environmental alteration. As anticipated, the NRSS is becoming adopted as a morphological scaffold on which the cellular and molecular events of regeneration can be referenced10.

Finally our method of cutting produces a gaping hole several orders of magnitude greater than the pin point puncture used in a recent study17, yet both wounds heal in around 6 hours. Documenting the visually arresting and distinct phases of wound closure should suggest experimental approaches to explain the apparent independence of the size of a wound and the time it takes to close. Thus, a deeper visual understanding of the aboral amputation process, provided by this protocol, will aid further investigations into this model regeneration system and broaden the application of this staging system using Nematostella vectensis.

Access restricted. Please log in or start a trial to view this content.

Protocol

1. Conditioning of Animals for Temperature, Nutrition and Light/Dark Cycle

  1. Obtain Nematostella vectensis adults from one of the numerous Nematostella labs worldwide, or a non-profit supplier (Table 1)
  2. Maintain Nematostella at constant temperature (typically between 18 and 21 °C) in the dark, in "1/3x" Artificial Sea Water (ASW) at a salinity of 12 parts per thousand (ppt). Maintain cultures in simple soda-lime glass culture dishes, typically 250 mL or 1.5 L capacity11.
    Note: These simple culture conditions are commonly used among labs that study Nematostella, but culture care can also be automated19.
  3. Feed Nematostella freshly hatched Artemia nauplii 2 - 4x per week. Hatch Artemia cysts in full strength (36 ppt) or 1/3x ASW at 30 °C, in a shallow rectangular glass dish20 or in any of a number of small scale, commercial or homemade brine shrimp hatcheries. If an incubator is not available, shrimp will hatch at RT but do so more slowly.
    Note: This often requires more than 24 h for completion.
  4. Replace anemone culture water at least once a week. For best adult health, thoroughly clean (without soap) the culture bowls once a week of accumulated mucous secretions, which coat the bowl and can trap uneaten food and waste, and entangle the animals.

2. Selection and Relaxation of Nutritionally Conditioned Animals

  1. Select size-matched polyps of approximately the same length (3 - 5 cm, when naturally relaxed) and place them in a bowl separated from the colony for three days prior to amputation.
    Note: The number of animals selected for cutting will be determined by the experiment being conducted, of course, but in general we recommend at least five animals per sample point with six replications. Thus, in a typical experiment a minimum of 30 animals would be preselected. In general, it is wise to select more than the minimum number (30) since amputations that are irregular (see below) can later affect scoring.
  2. Remove the dish of selected animals from the incubator into room light at least one hour prior to amputation.
    Note: Exposure to room light and vibrations of handling will likely cause the animals to contract, so they need to be adapted or "relaxed" by incubation on the lab bench. Animals will become refractory to touch and light exposure and at that point can be moved by gentle pipetting.
  3. Optional: Anesthetize the animals by adding 7.5% MgCl2 (in 1/3x ASW). Gently add the MgCl2 solution to the bowl with a standard plastic 5 mL pipette.
    Note: Although animals will eventually become habituated to the light and to physical manipulation, it may be advantageous to anesthetize animals to maintain or "fix" the relaxed state after they have become elongated16,21,22.
  4. Use a wide bore (>0.5 cm) plastic pipette to transfer (in 1/3x ASW) five animals from the pool to be amputated, into the bottom of a sterile glass cutting dish of 100 mm diameter containing 12 ppt ASW. Place the dish on to the stage of a stereomicroscope with variable magnification between 10 - 40X.
    ​Note: If the animals have not been anesthetized and relaxed for cutting, they may still respond to touch and stereoscope illumination and thus may need a few minutes to become relaxed again.

3. Amputation

  1. Using a sterile scalpel, amputate the aboral physa from each polyp, with the goal to obtain a section of the physa that is approximately as long as it is wide and containing no mesentery.
    Note: The ideal cut site is just aboral to the termination of the mesentery. At the plane of cutting there is a transition from mesentery proper to thin lines corresponding to each mesenterial insertion (see Figure 1, arrows). Absence of mesentery is critical because it produces mucous that may facilitate 'plugging' the hole17,30.
    1. Place the scalpel blade in contact with the animal at the desired site of amputation. Do this either unassisted (freehand), or by gently grasping the animal's body with a #5 forceps (Dumont style or similar).
    2. Cut through the tissue by leveraging the curved blade of the scalpel in a 'rocking' motion across the body.
      Note: The tissue should sever cleanly as the scalpel is rocked and liberate the desired section of physa from the donor. However, if a small piece of tissue still connects the body and the physa, cut it with the scalpel. Do not attempt to separate the connected pieces by pulling, as this may damage the physa.
  2. Remove each amputated 'donor' polyp from the dish and return it to a separate bowl labeled 'pooled amputees'; date the bowl and return it to stock culture.
    Note: Amputated polyps will heal the aboral wound within a day and then can be fed normally. They will regenerate a normal looking physa within two weeks at which point the physa can be amputated again if desired.
  3. Rinse the excised physa that remain in the cutting dish in 12 ppt ASW, then transfer each physa to a separate sterile well in a multi-well cell culture plate that already has 10 mL of 12 ppt ASW in each well.
    Note: This example uses a six well plate, with each well holding 10 mL of seawater and five excised physa. In general seawater should cover the physa sufficiently to avoid exposure to air due to movement in handling and potential evaporation. The plate or wells should have a lid.
  4. Repeat steps 3.1 - 3.3 to collect at least 5 physa in each well reserved for each experimental treatment.
  5. Incubate the physa at a temperature that will provide the best rate of regeneration for the planned experimental interrogations. Place the plate containing the physa into a temperature regulated incubator, at a fixed temperature determined by the desired rate of regeneration.
    ​Note: The physa will regenerate missing tissues and form a full polyp when incubated at temperatures between 15 and 27 °C. The rate of regeneration is temperature dependent except for the first two stages. The average day for reaching Stage 4 for all temperatures is 7 d after cutting and this also coincides with regeneration at 21 °C. At 27 °C, Stage 4 is reached about 3 days earlier and at 15 °C, Stage 4 is delayed by about 3 d compared to regeneration at 21 °C (also see Reference 10).

4. Assessing Regeneration with the Nematostella Regeneration Staging System (NRSS)

  1. Score the physa using a stereo-compound microscope with variable magnification (10 - 80X). Score the freshly cut Nematostella physa as Stage 0 and continue scoring at the same time each day post amputation (dpa) using the NRSS10.
    Note: For key staging criteria and details refer Reference 10.
    1. Score physa as Stage 0 (Open Wound) if a freshly cut physa appears as a cup- shaped mass resembling a flaccid balloon, with an open wound site is likely visible.
      ​Note: The wound edges might also stick together from the outset, but the tissue will still be collapsed and lack rigidity. The edges of the open wound may be observed undergoing radial contraction as the wound heals.
    2. Score physa as Stage 1 (Wound Closed) if the amputation wound appears closed.
      Note: Wound location will correspond to the future oral pole. The outer surface around the future oral pole may begin to display distinct arches corresponding to the underlying radially symmetric endodermal mesenterial insertions.
    3. Score physa as Stage 2 (Radial Arches) if the surface of the oral pole appears inflated, revealing eight raised arches arranged in a radially symmetric pattern and separated by grooves. Observe small, hemispherical blebs at the apex of the arches. They will be about as tall as wide, likely transient, and initially comprised by a single ectodermal cell layer.
      Note: In some cases double-layered blebs may stabilize. Note: At this or later stages a mucous layer may appear to encapsulate the physa (Figure 2) in a membranous 'sheath'. This encapsulating material should be removed to facilitate scoring.
    4. Score physa as Stage 3 (Tentacle) if the buds of the tentacles containing endodermal and ectodermal tissue layers are stably formed at the oral end of at least some radial arches.
      Note: The tentacles are longer than they are wide and are minimally motile. The physa will show increased, but variable inflation so that mesentery rudiments may become visible extending from the mesenterial insertion into the body cavity (coelenteron).
    5. Score physa as Stage 4 (Linear Mesenteries) if the physa contains eight distinct, visible mesenteries that extend into the coelenteron from insertions in the body wall, with oral-aboral lengths that are more than twice their radial width measured from where they appear to connect to the pharynx at its aboral end (enterostome).
      Note: Four or fewer mesenteries have "pleated" internal free edges. The pharynx is visible. More than eight tentacles are visible, motile and sometimes they contract into the body.
    6. Score physa as Stage 5 (Predominantly Pleated Mesenteries) if the physa has more than four mesenteries with pleating, and the pleating is more full and sinuous than at Stage 4. The animal has an almost "normal" adult appearance, but there are no visible gonadal cells.

Access restricted. Please log in or start a trial to view this content.

Results

The progression of morphological events during regeneration in severed physa is shown in Figure 1A, which includes representative views of physa at each NRSS stage. The typical physa cut site is indicated on the adult (arrowheads). The photographs in Figure 1A show progressive regeneration of oral and body structures from freshly cut physa through fully formed polyp. Figure 1B, C show the arrangement of internal septa, the mesenterie...

Access restricted. Please log in or start a trial to view this content.

Discussion

Use of Nematostella as a model of wound healing and regeneration is becoming increasingly popular. Thus, it is important to be able to visualize the morphological patterns of a particular protocol before effective cellular and molecular analyses can be assigned and compared. Nematostella have a high degree of regenerative "flexibility", being able to reform almost any missing structure amputated at any location, at post-planula stages of life. Thus, various investigators have examined regenerati...

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by a New York Stem Cell Science (NYSTEM C028107) Grant to GHT.

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
Nematostella vectensis, adultsMarine Biological Lab (MBL)non-profit supplier
Glass Culture Dish, 250 mLCarolina Biological Supply741004250 mL
Glass Culture Dish, 1,500 mLCarolina Biological Supply7410061,500 mL
Polyethylene transfer pipette, 5 mLUSA Scientific 1022-2500narrow bore, graduated
Polyethylene transfer pipet, taperedSamco202-205cut off 1 inch of tip to make wide bore
Disposable ScalpelFeather Safety Razor Co. Ltdno. 10blade should be curved
#5 Dumont Fine point tweezersRobozRS5045alternative suppliers available
Pyrex Petri dish, 100 mm diameterCorning3160can substitute other glass Petri plates
Sterile 6-well plateCorning Falcon 353046or similar from other manufacturer
Sterile 12-well plateNunc 150628or similar from other manufacturer
Sterile 24-well plateCellstar, Greiner bio-one662-160or similar from other manufacturer
Brine shrimp hathery kitSan Francisco Bay; drsfostersmith.comCD-154005option for growing brine shrimp
pyrex baking dishcommon in grocery storesoption for growing brine shrimp
artificial seawater mix 50 gal or more Instant Ocean; drsfoster-smith.comCD-116528others brands may suffice
Plastic tub for stock ASW preparationvariouscommon 25 gallon plastic trash can OK
Polypropylene CarboyCarolina Biological Supply716391For working stock of ASW @ 12 ppt
Beaker, Graduated, 4,000 mLPhytoTechnology LaboratoriesB199For dilution of 36 ppt ASW to 12 ppt
Stereomicroscope and light sourcevarious with continuous 1 - 40X magnification

References

  1. Lenhoff, S. G., Lenhoff, H. M. Hydra and the Birth of Experimental Biology: Abraham Trembley's Memoirs Concerning the Natural History of a Type of Freshwater Polyp with Arms Shaped like Horns. , The Boxwood Press. (1986).
  2. Trembley, A. Mémoires pour servir à l'histoire d'un genre de polypes d'eau douce, à bras en forme de cornes. , Jean & Herman Verbeek. (1744).
  3. Poss, K. D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet. 11 (10), 710-722 (2010).
  4. Galliot, B. Hydra, a fruitful model system for 270 years. Int J Dev Biol. 56 (6-8), 411-423 (2012).
  5. Gold, D. A., Jacobs, D. K. Stem cell dynamics in Cnidaria: are there unifying principles? Dev Genes Evol. 233 (1-2), 53-66 (2013).
  6. Holstein, T. W., Hobmayer, E., Technau, U. Cnidarians: an evolutionarily conserved model system for regeneration? Dev Dyn. 226 (2), 257-267 (2003).
  7. Amiel, A. R., et al. Characterization of Morphological and Cellular Events Underlying Oral Regeneration in the Sea Anemone, Nematostella vectensis. Int J Mol Sci. 16 (12), 28449-28471 (2015).
  8. Warren, C. R., et al. Evolution of the perlecan/HSPG2 gene and its activation in regenerating Nematostella vectensis. PLoS One. 10 (4), e0124578(2015).
  9. Gong, Q., et al. Integrins of the starlet sea anemone Nematostella vectensis. Biol Bull. 227 (3), 211-220 (2014).
  10. Bossert, P. E., Dunn, M. P., Thomsen, G. H. A staging system for the regeneration of a polyp from the aboral physa of the anthozoan Cnidarian Nematostella vectensis. Dev Dyn. 242 (11), 1320-1331 (2013).
  11. Stefanik, D. J., Friedman, L. E., Finnerty, J. R. Collecting, rearing, spawning and inducing regeneration of the starlet sea anemone, Nematostella vectensis. Nat Protoc. 8 (5), 916-923 (2013).
  12. Tucker, R. P., et al. A thrombospondin in the anthozoan Nematostella vectensis is associated with the nervous system and upregulated during regeneration. Biol Open. 2 (2), 217-226 (2013).
  13. Passamaneck, Y. J., Martindale, M. Q. Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis. BMC Dev Biol. 12, (2012).
  14. Trevino, M., Stefanik, D. J., Rodriguez, R., Harmon, S., Burton, P. M. Induction of canonical Wnt signaling by alsterpaullone is sufficient for oral tissue fate during regeneration and embryogenesis in Nematostella vectensis. Dev Dyn. 240 (12), 2673-2679 (2011).
  15. Renfer, E., Amon-Hassenzahl, A., Steinmetz, P. R., Technau, U. A muscle-specific transgenic reporter line of the sea anemone, Nematostella vectensis. Proc Natl Acad Sci U S A. 107 (1), 104-108 (2010).
  16. Burton, P. M., Finnerty, J. R. Conserved and novel gene expression between regeneration and asexual fission in Nematostella vectensis. Dev Genes Evol. 219 (2), 79-87 (2009).
  17. DuBuc, T. Q., Traylor-Knowles, N., Martindale, M. Q. Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis. BMC Biol. 12, (2014).
  18. Hand, C., Uhlinger, K. R. Asexual reproduction by transverse fission and some anomalies in the sea anemone Nematostella vectensis. Invert Biol. 114, 9-18 (1995).
  19. Fritzenwanker, J. H., Technau, U. Induction of gametogenesis in the basal cnidarian Nematostella vectensis(Anthozoa). Dev Genes Evol. 212 (2), 99-103 (2002).
  20. Magie, C., Bossert, P., Aramli, L., Thomsen, G. Science's super star: The starlet sea anemone is an ideal tool for student inquiry. The Science Teacher. 83 (3), 33-40 (2016).
  21. Genikhovich, G., Technau, U. In situ hybridization of starlet sea anemone (Nematostella vectensis) embryos, larvae, and polyps. Cold Spring Harb Protoc. (9), (2009).
  22. Magie, C. R., Pang, K., Martindale, M. Q. Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol. 215 (12), 618-630 (2005).
  23. Chera, S., Kaloulis, K., Galliot, B. The cAMP response element binding protein (CREB) as an integrative HUB selector in metazoans: clues from the hydra model system. Biosystems. 87 (2-3), 191-203 (2007).
  24. Reitzel, A. M., Burton, P. M., Krone, C., Finnerty, J. R. Comparison of developmental trajectories in the starlet sea anemone Nematostella vectensis: embryogenesis, regeneration, and two forms of asexual fission. Invertebr Biol. 126, 99-112 (2007).
  25. Ikmi, A., McKinney, S. A., Delventhal, K. M., Gibson, M. C. TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun. 5, 5486(2014).
  26. Jahnel, S. M., Walzl, M., Technau, U. Development and epithelial organisation of muscle cells in the sea anemone Nematostella vectensis. Front Zool. 11, 44(2014).
  27. Kelava, I., Rentzsch, F., Technau, U. Evolution of eumetazoan nervous systems: insights from cnidarians. Philos Trans R Soc Lond B Biol Sci. 370 (1684), (2015).
  28. Nakanishi, N., Renfer, E., Technau, U., Rentzsch, F. Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development. 139 (2), 347-357 (2012).
  29. Richards, G. S., Rentzsch, F. Transgenic analysis of a SoxB gene reveals neural progenitor cells in the cnidarian Nematostella vectensis. Development. 141 (24), 4681-4689 (2014).
  30. DuBuc, T. Q., et al. In vivo imaging of Nematostella vectensis embryogenesis and late development using fluorescent probes. BMC Cell Biol. 15, (2014).
  31. Kaur, J., Debnath, J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 16 (8), 461-472 (2015).
  32. Carroll, B., Korolchuk, V. I., Sarkar, S. Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis. Amino Acids. 47 (10), 2065-2088 (2015).
  33. Glick, D., Barth, S., Macleod, K. F. Autophagy: cellular and molecular mechanisms. J Pathol. 221 (1), 3-12 (2010).
  34. Rodolfo, C., Di Bartolomeo, S., Cecconi, F. Autophagy in stem and progenitor cells. Cell Mol Life Sci. 73 (3), 475-496 (2016).
  35. Guan, J. L., et al. Autophagy in stem cells. Autophagy. 9 (6), 830-849 (2013).
  36. Phadwal, K., Watson, A. S., Simon, A. K. Tightrope act: autophagy in stem cell renewal, differentiation, proliferation, and aging. Cell Mol Life Sci. 70 (1), 89-103 (2013).
  37. Varga, M., Fodor, E., Vellai, T. Autophagy in zebrafish. Methods. 75, 172-180 (2015).
  38. Varga, M., et al. Autophagy is required for zebrafish caudal fin regeneration. Cell Death Differ. 21 (4), 547-556 (2014).
  39. Gonzalez-Estevez, C., Salo, E. Autophagy and apoptosis in planarians. Apoptosis. 15 (3), 279-292 (2010).
  40. Buzgariu, W., Chera, S., Galliot, B. Methods to investigate autophagy during starvation and regeneration in hydra. Methods Enzymol. 451, 409-437 (2008).
  41. Tettamanti, G., et al. Autophagy in invertebrates: insights into development, regeneration and body remodeling. Curr Pharm Des. 14 (2), 116-125 (2008).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Polyp RegenerationNematostella VectensisAboral PhysaWound HealingTissue RepairMorphological ChangesRegeneration BiologyAmputationTissue SeparationCulture ConditionsStereo MicroscopeScalpelForceps

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved