Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Neutrophil extracellular traps (NETs) are networks of DNA, histones and neutrophil proteins. Although a component of the innate immune response, NETs are implicated in autoimmunity and thrombosis. This protocol describes a simple method for canine neutrophil isolation and quantification of NETs using a microplate fluorescence assay.
Neutrophil extracellular traps are networks of DNA, histones and neutrophil proteins released in response to infectious and inflammatory stimuli. Although a component of the innate immune response, NETs are implicated in a range of disease processes including autoimmunity and thrombosis. This protocol describes a simple method for canine neutrophil isolation and quantification of NETs using a microplate fluorescence assay. Blood is collected using conventional venipuncture techniques. Neutrophils are isolated using dextran sedimentation and a density gradient using conditions optimized for dog blood. After allowing time for attachment to the wells of a 96 well plate, neutrophils are treated with NET-inducing agonists such as phorbol-12-myristate-13-acetate or platelet activating factor. DNA release is measured by the fluorescence of a cell-impermeable nucleic acid dye. This assay is a simple, inexpensive method for quantifying NET release, but NET formation rather than other causes of cell death must be confirmed with alternative methods.
There are over 70 million pet dogs in the USA alone1. As valued family members, these animals often receive cutting edge medical care. Equally because they share our environment, dogs can provide insights into the pathogenesis and treatment of human disease1. However, whether translating discoveries in human medicine into veterinary treatments or vice versa, it is important to thoroughly characterize species variations even in highly conserved systems such as the innate immune response. Examples of differences between the canine and human innate immune system include high expression CD4 on dog neutrophils2; the absence of a functional homolog of the cytoplasmic flagellin sensor IPAF in dogs3 and the expression of a caspase 1/4 hybrid in carnivores4.
Neutrophil extracellular traps (NETs) are a relatively recently discovered component of innate immunity5. NETs are networks of DNA, nuclear and granular proteins released in response to a wide range of inflammatory or infectious stimuli6. NET-like structures have been demonstrated across many species including chickens7, fish8, mollusks9 and acoelomates10, but there are species variations. For example, murine neutrophils respond more slowly to NETosis stimuli than human neutrophils, and form less diffuse NETs11. There is a large body of evidence from multiple species that NETs entrap microbes, and more controversially may be directly involved in killing pathogens12,13. However, NET components also enhance tissue damage, promote thrombosis and act as autoantigens14,15. The balance between the beneficial and deleterious effects of NETs may vary between different diseases and different species, suggesting it is important to investigate NETs both in the species and condition of interest.
Here we describe a simple protocol for inducing and measuring the release of NETs by canine neutrophils. This method is similar to those used to isolate neutrophils16 and induce NETosis in other species, but conditions such as agonist concentration and incubation time have been optimized for canine neutrophils. A similar NET quantification DNA release assay has also been described in other species but the method presented here is also optimized for dogs8,17,18.
All experiments were performed with ethical permission from the Iowa State University Institutional Animal Care and Use Committee.
1. Blood Collection
2. Neutrophil Isolation
3. DNA Release Assay
Using this protocol, there should be a strong fold change in fluorescence after stimulating neutrophils with the positive controls, PMA and PAF. As illustrated in Figure 1B, stimulation of canine neutrophils with 31 µM PAF for 1 hr results in a mean 4.0-fold increase in fluorescence compared with non-stimulated cells (range 2.0-5.8, n = 5 dogs)18. PMA at 0.1 µM (Figure 1A) is a slower agonist which does not result in an increase in fl...
The DNA release assay presented is a readily quantifiable assay for extracellular DNA. The method was adapted from similar techniques used to assess NET formation in other species, but centrifugation speeds, agonist concentrations and incubation times have been altered to optimize the method for use with canine neutrophils8,17,18. Similar adjustments could be made to adapt the method for other species. The assay is straightforward and inexpensive when compared with other methods for measuring NETosis such as f...
The authors have nothing to disclose.
The authors gratefully acknowledge Drs James Roth, William Nauseef and Kayoko Kimura and Mr Tom Skadow for assistance with development of the canine neutrophil protocols. RDG is supported by a Wellcome Trust Fellowship ref: WT093767MA.
Name | Company | Catalog Number | Comments |
Plastic Whole Blood tube with spray-coated K2EDTA | BD | 367835 | |
Histopaque-1077 | Sigma-Aldrich | 10771 | |
Dextran-500 | Accurate chemical and scientific corp. | AN228410 | |
Phosphate buffered saline | ThermoFisher scientific | 20012043 | |
Fetal bovine calf serum, heat inactivated | ThermoFisher scientific | 10100139 | |
RPMI Media 1640, without phenol red or L-glutamine | ThermoFisher scientific | 32404-014 | Should be free from phenol red |
96 well flat bottomed sterile polystyrene plate | Falcon | 353072 | |
Phorbol 12-myristate 13-acetate | Sigma-Aldrich | P1585 | |
Platelet activating factor | Sigma-Aldrich | P4904 | |
SYTOX Green Nucleic Acid Stain | ThermoFisher scientific | S7020 | |
Synergy 2 Multi-Mode Reader | BioTek | NA |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone