JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

We have succeeded in establishing a method for RNA isolation from plant seeds containing large amounts of oils, proteins, and polyphenols, which have inhibitory effects on high-purity RNA isolation. Our method is suitable for monitoring the expression of genes with low level transcripts in seeds.

Streszczenie

Plant seeds accumulate large amounts of storage reserves comprising biodegradable organic matter. Humans rely on seed storage reserves for food and as industrial materials. Gene expression profiles are powerful tools for investigating metabolic regulation in plant cells. Therefore, detailed, accurate gene expression profiles during seed development are required for crop breeding. Acquiring highly purified RNA is essential for producing these profiles. Efficient methods are needed to isolate highly purified RNA from seeds. Here, we describe a method for isolating RNA from seeds containing large amounts of oils, proteins, and polyphenols, which have inhibitory effects on high-purity RNA isolation. Our method enables highly purified RNA to be obtained from seeds without the use of phenol, chloroform, or additional processes for RNA purification. This method is applicable to Arabidopsis, rapeseed, and soybean seeds. Our method will be useful for monitoring the expression patterns of low level transcripts in developing and mature seeds.

Wprowadzenie

Plants produce seeds, which give rise to the next generation. Seeds accumulate large amounts of storage reserves, such as oils, carbohydrates, and proteins, for post-germinative growth. Humans utilize seed storage reserves as sources of food and animal feed, and thus plant seeds are one of the major suppliers of edible organic matter worldwide. Increasing seed yields is an important challenge in plant science.

Since seed storage reserves are commercially valuable sources of food and industrial materials, the molecular mechanisms underlying the regulation of the metabolism of these reserves have been widely investigated1-6. Further elucidating these mechanisms will be useful for increasing seed yields in crops. Seeds develop in plant ovaries after fertilization, and they mature through a series of developmental stages1,6,7. Further understanding the molecular mechanism underlying seed development requires detailed, precise gene expression profiles from a series of developing seeds to be produced. However, the high amounts of oils, proteins, carbohydrates, and polyphenols in plant seeds make it difficult to isolate highly purified RNA, which precludes precise profiling of gene expression.

Here, we introduce an efficient method for RNA isolation from oilseeds containing large amounts of oils, proteins, and polyphenols. Using this method, researchers will be able to prepare highly purified RNA. Such RNA will be useful for monitoring transcriptional changes in key genes controlling the metabolic regulation of seed storage reserves in developing and mature oilseeds.

Access restricted. Please log in or start a trial to view this content.

Protokół

1. Extraction of Total RNA from Plant Seeds

  1. Prepare buffer sets, spin columns, 1.5 and 2.0 mL polypropylene tubes, and nuclease-free 1.5 mL polypropylene tubes.
  2. Add 1% (w/v) molecular biology grade polyvinylpyrrolidone (hereafter referred to as PVP) to cell lysis buffer for RNA extraction and vortex vigorously. Incubate for 20 min at 25 °C to dissolve completely. After 20 min incubation, mix the buffer gently by turning the tube upside down to prevent the formation of bubbles. Store at room temperature (15-25 °C) before use.
  3. Harvest fruits from Arabidopsis thaliana plants and place in 1.5 mL polypropylene tubes on ice. Place fruits on aluminum plates kept at 4 °C and isolate seeds from the fruits under a stereo microscope.
    1. Place the isolated seeds (approximately 200 seeds) into 1.5 mL polypropylene tubes that have been stored in an aluminum rack on ice and immediately place the tubes in liquid nitrogen.
  4. Remove the tubes from the liquid nitrogen and return them to the aluminum rack on ice. Add 100 µL of the buffer containing 1% PVP and centrifuge for 1 min at 1,000 x g at 4 °C.
  5. Homogenize the sample with a stainless steel pestle using a motor-grinder for 60 s while keeping the tube in the aluminum rack on ice.
  6. Add 550 µL of the buffer containing 1% PVP, mix the buffer gently by turning the tube upside down, and incubate for 10 min at 25 °C.
  7. Centrifuge for 5 min at 8,000 x g at 25 °C and transfer 550 µL of the supernatant to a new 1.5 mL polypropylene tube.
  8. Centrifuge for 5 min at 10,000 x g at 25 °C and transfer 450 µL of the supernatant to a new 1.5 mL polypropylene tube.
  9. Use the supernatant as the cell lysate for RNA extraction. Hereafter, follow the procedure described in the manufacturer's instructions in the commercially available kit.
  10. Elute the RNA using a minimum volume of the elution buffer to ensure a sufficiently high concentration of RNA for monitoring the expression patterns of low level transcripts. Store the RNA in a deep freezer until used.

2. Verification of RNA Quality

  1. Thaw the total RNA, mix by gentle tapping, and place the tube in an aluminum rack on ice.
  2. Measure the RNA concentration, A260/A280 ratio, and A260/A230 ratio using a microvolume spectrophotometer.
  3. Dilute the total RNA in RNase-free water to a final concentration of 70 ng/µL.

3. Reverse Transcription of Total RNA from Seeds

  1. Thaw the total RNA and buffer sets from the commercial kit. Keep the enzymes from the kit on ice after gentle tapping. Prepare nuclease-free 0.2 mL polypropylene tubes.
  2. Add 5 µL of total RNA, 1 µL of Oligo dT primer (50 µM), and 1 µM of Random 6-mer (50 µM) to the 0.2 mL polypropylene tube on ice.
  3. Incubate for 15 min at 37 ºC and place on ice.
  4. Hereafter, follow the procedure described in the manufacturer's instructions in the reverse transcription-PCR kit.
  5. Place the reverse transcription products on ice before use.

4. Quantitative Real-time PCR Analysis

  1. Construct plasmids harboring the target gene sequences using the manufacturer's protocol.
  2. Adjust the concentrations to 100-500,000 copies/µL for DNA templates for the standard curves.
  3. Dilute the cDNA solutions (1:100) with distilled water.
  4. Add 2 µL of the diluted cDNA solutions and the plasmids for the standard curves to the master mix from the quantitative real-time PCR kit.
  5. Set up real-time PCR using the following cycling conditions: 95 °C for 30 s and then 40 cycles at 95 °C for 5 s and 60 °C for 35 s.
  6. Analyze the copy numbers according to the manufacturer's instructions for the real-time PCR system.

Access restricted. Please log in or start a trial to view this content.

Wyniki

We first investigated the optimal concentration of PVP using Arabidopsis mature seeds. Total RNA was isolated from approximately 1,000 seeds according to the protocol described above using cell lysis buffer containing 0%, 0.25%, 0.5%, 1.0% or 2.0% PVP. After homogenization and centrifugation, the supernatant was collected while avoiding the oil layer and seed debris (Figure 1A).

Access restricted. Please log in or start a trial to view this content.

Dyskusje

Gene expression profiles contribute to our understanding of plant physiology; therefore, specific RNA isolation methods have been developed for each sample condition9-12. We investigated the processes that were inhibited during RNA isolation from seeds and found that RNA binding to silica membranes was severely inhibited. Large amounts of oil, proteins, and polyphenols inhibit RNA isolation. We modified the RNA extraction process to remove these compounds with a lysis solution before the process of RNA binding...

Access restricted. Please log in or start a trial to view this content.

Ujawnienia

The authors have nothing to disclose.

Podziękowania

We thank the staff of Functional Genomics Facility and  Spectrography and Bioimaging Facility, NIBB Core Research Facilities, and Model Plant Research Facility, NIBB Bioresource Center.

Access restricted. Please log in or start a trial to view this content.

Materiały

NameCompanyCatalog NumberComments
RNeasy Plant Mini KitQIAGEN74904
polyvinylpyrrolidoneSigma-AldrichP5288-100G
HOMOGENIZER S-303AS ONE1-1133-02
NanoDrop LiteThermo ScientificND-NDL-US-CAN
PrimeScript RT reagent Kit (Perfect Real Time)TAKARARR037A
KAPA SYBR Fast qPCR kitKapa biosystemsKK4601

Odniesienia

  1. Hills, M. J. Control of storage-product synthesis in seeds. Curr Opin Plant Biol. 7 (3), 302-308 (2004).
  2. Li-Beisson, Y., et al. Acyl-lipid metabolism. Arabidopsis Book. 11, e0161(2013).
  3. Bates, P. D., Stymne, S., Ohlrogge, J. Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol. 16 (3), 358-364 (2013).
  4. Santos-Mendoza, M., et al. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J. 54 (4), 608-620 (2008).
  5. Durrett, T. P., Benning, C., Ohlrogge, J. Plant triacylglycerols as feedstocks for the production of biofuels. Plant J. 54 (4), 593-607 (2008).
  6. Kanai, M., et al. The Plastidic DEAD-box RNA helicase 22, HS3, is essential for plastid functions both in seed development and in seedling growth. Plant Cell Physiol. 54 (9), 1431-1440 (2013).
  7. Kanai, M., et al. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds. Plant Biotechnol J. 14 (5), 1241-1250 (2016).
  8. Dekkers, B. J., et al. Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds. Plant Cell Physiol. 53 (1), 28-37 (2012).
  9. Salzman, R. A., et al. An improved RNA isolation method for plant tissues containing high levels of phenolic compounds or carbohydrates. Plant Mol Biol Rep. 17 (1), 11-17 (1999).
  10. Vicient, C. M., Delseny, M. Isolation of total RNA from Arabidopsis thaliana seeds. Anal Biochem. 268 (2), 412-413 (1999).
  11. Wang, G. F., et al. Isolation of high quality RNA from cereal seeds containing high levels of starch. Phytochem Analysis. 23 (2), 159-163 (2012).
  12. Birtic, S., Kranner, I. Isolation of high-quality RNA from polyphenol-, polysaccharide- and lipid-rich seeds. Phytochem Analysis. 17 (3), 144-148 (2006).

Access restricted. Please log in or start a trial to view this content.

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

RNA ExtractionSeedQuantitative Transcriptome AnalysisArabidopsis ThalianaPVPCell Lysis BufferCentrifugationHomogenizationSpin Column based MethodHigh purity RNACereal BiologyGene ProfilesTranscripts

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone