Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We have succeeded in establishing a method for RNA isolation from plant seeds containing large amounts of oils, proteins, and polyphenols, which have inhibitory effects on high-purity RNA isolation. Our method is suitable for monitoring the expression of genes with low level transcripts in seeds.
Plant seeds accumulate large amounts of storage reserves comprising biodegradable organic matter. Humans rely on seed storage reserves for food and as industrial materials. Gene expression profiles are powerful tools for investigating metabolic regulation in plant cells. Therefore, detailed, accurate gene expression profiles during seed development are required for crop breeding. Acquiring highly purified RNA is essential for producing these profiles. Efficient methods are needed to isolate highly purified RNA from seeds. Here, we describe a method for isolating RNA from seeds containing large amounts of oils, proteins, and polyphenols, which have inhibitory effects on high-purity RNA isolation. Our method enables highly purified RNA to be obtained from seeds without the use of phenol, chloroform, or additional processes for RNA purification. This method is applicable to Arabidopsis, rapeseed, and soybean seeds. Our method will be useful for monitoring the expression patterns of low level transcripts in developing and mature seeds.
Plants produce seeds, which give rise to the next generation. Seeds accumulate large amounts of storage reserves, such as oils, carbohydrates, and proteins, for post-germinative growth. Humans utilize seed storage reserves as sources of food and animal feed, and thus plant seeds are one of the major suppliers of edible organic matter worldwide. Increasing seed yields is an important challenge in plant science.
Since seed storage reserves are commercially valuable sources of food and industrial materials, the molecular mechanisms underlying the regulation of the metabolism of these reserves have been widely investigated1-6. Further elucidating these mechanisms will be useful for increasing seed yields in crops. Seeds develop in plant ovaries after fertilization, and they mature through a series of developmental stages1,6,7. Further understanding the molecular mechanism underlying seed development requires detailed, precise gene expression profiles from a series of developing seeds to be produced. However, the high amounts of oils, proteins, carbohydrates, and polyphenols in plant seeds make it difficult to isolate highly purified RNA, which precludes precise profiling of gene expression.
Here, we introduce an efficient method for RNA isolation from oilseeds containing large amounts of oils, proteins, and polyphenols. Using this method, researchers will be able to prepare highly purified RNA. Such RNA will be useful for monitoring transcriptional changes in key genes controlling the metabolic regulation of seed storage reserves in developing and mature oilseeds.
Access restricted. Please log in or start a trial to view this content.
1. Extraction of Total RNA from Plant Seeds
2. Verification of RNA Quality
3. Reverse Transcription of Total RNA from Seeds
4. Quantitative Real-time PCR Analysis
Access restricted. Please log in or start a trial to view this content.
We first investigated the optimal concentration of PVP using Arabidopsis mature seeds. Total RNA was isolated from approximately 1,000 seeds according to the protocol described above using cell lysis buffer containing 0%, 0.25%, 0.5%, 1.0% or 2.0% PVP. After homogenization and centrifugation, the supernatant was collected while avoiding the oil layer and seed debris (Figure 1A).
Access restricted. Please log in or start a trial to view this content.
Gene expression profiles contribute to our understanding of plant physiology; therefore, specific RNA isolation methods have been developed for each sample condition9-12. We investigated the processes that were inhibited during RNA isolation from seeds and found that RNA binding to silica membranes was severely inhibited. Large amounts of oil, proteins, and polyphenols inhibit RNA isolation. We modified the RNA extraction process to remove these compounds with a lysis solution before the process of RNA binding...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We thank the staff of Functional Genomics Facility and Spectrography and Bioimaging Facility, NIBB Core Research Facilities, and Model Plant Research Facility, NIBB Bioresource Center.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
RNeasy Plant Mini Kit | QIAGEN | 74904 | |
polyvinylpyrrolidone | Sigma-Aldrich | P5288-100G | |
HOMOGENIZER S-303 | AS ONE | 1-1133-02 | |
NanoDrop Lite | Thermo Scientific | ND-NDL-US-CAN | |
PrimeScript RT reagent Kit (Perfect Real Time) | TAKARA | RR037A | |
KAPA SYBR Fast qPCR kit | Kapa biosystems | KK4601 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone