Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we show how to analyze dendritic routing of Drosophila medulla neurons in columns and layers. The workflow includes a dual-view imaging technique to improve the image quality and computational tools for tracing, registering dendritic arbors to the reference column array and for analyzing the dendritic structures in 3D space.
In many regions of the central nervous systems, such as the fly optic lobes and the vertebrate cortex, synaptic circuits are organized in layers and columns to facilitate brain wiring during development and information processing in developed animals. Postsynaptic neurons elaborate dendrites in type-specific patterns in specific layers to synapse with appropriate presynaptic terminals. The fly medulla neuropil is composed of 10 layers and about 750 columns; each column is innervated by dendrites of over 38 types of medulla neurons, which match with the axonal terminals of some 7 types of afferents in a type-specific fashion. This report details the procedures to image and analyze dendrites of medulla neurons. The workflow includes three sections: (i) the dual-view imaging section combines two confocal image stacks collected at orthogonal orientations into a high-resolution 3D image of dendrites; (ii) the dendrite tracing and registration section traces dendritic arbors in 3D and registers dendritic traces to the reference column array; (iii) the dendritic analysis section analyzes dendritic patterns with respect to columns and layers, including layer-specific termination and planar projection direction of dendritic arbors, and derives estimates of dendritic branching and termination frequencies. The protocols utilize custom plugins built on the open-source MIPAV (Medical Imaging Processing, Analysis, and Visualization) platform and custom toolboxes in the matrix laboratory language. Together, these protocols provide a complete workflow to analyze the dendritic routing of Drosophila medulla neurons in layers and columns, to identify cell types, and to determine defects in mutants.
During development, neurons elaborate dendrites in complex but stereotyped branched patterns to form synapses with their presynaptic partners. Dendritic branching patterns correlate with neuronal identity and functions. The locations of dendritic arbors determine the type of presynaptic inputs they receive, while the dendritic branching complexity and field sizes govern the input number. Thus, dendritic morphological properties are critical determinants for synaptic connectivity and neuronal computation. In many regions of complex brains, such as the fly optic lobes and the vertebrate retina, synaptic circuits are organized in columns and layers to facilitate information processing1,2. In such a column and layer organization, presynaptic neurons of a distinct modality project axons to terminate at a specific layer (so-called layer-specific targeting) and to form an orderly two-dimensional array (so-called topographic map), while postsynaptic neurons extend dendrites of appropriate sizes in specific layers to receive presynaptic inputs of the correct types and numbers. While axonal targeting to layers and columns has been well studied3,4, much less is known about how dendrites are routed to specific layers and expand appropriately sized receptive fields to form synaptic connections with the correct presynaptic partners5. The difficulty of imaging and quantifying dendritic targeting to layers and columns has hindered the study of dendritic development in columnar and laminated brain structures.
Drosophila medulla neurons are an ideal model for studying dendritic routing and circuit assembly in columns and layers. The fly medulla neuropil is organized as a 3D lattice of 10 layers and approximately 750 columns. Each column is innervated by a set of afferents, including photoreceptors R7/R8 and lamina neurons L1 - L5, whose axonal terminals form topographic maps in a layer-specific fashion6. About 38 types of medulla neurons are present in every medulla column and elaborate dendrites in specific layers and with appropriate field sizes to receive inputs from these afferents7. The synaptic circuits in the medulla have been reconstructed at the electron microscopic level; thus, the synaptic partnerships are well established7,8. Furthermore, genetic tools for labeling various types of medulla neurons are available9,10,11. By examining three types of transmedulla (Tm) neurons (Tm2, Tm9 and Tm20), we have previously identified two cell-type-specific dendritic attributes: (i) Tm neurons project dendrites in either the anterior or posterior direction (planar projection direction), depending on the cell types and (ii) dendrites of medulla neurons terminate in specific medulla layers in a cell-type-specific fashion (layer-specific termination)12. Planar projection direction and layer-specific termination are sufficient to differentiate these three types of Tm neurons, while mutations that disrupt Tm responses to layer and column cues affect distinct aspects of these attributes.
Here, we present a complete workflow for examining the dendritic patterning of Drosophila medulla neurons in columns and layers (Figure 1). First, we show a dual-view imaging method, which uses customized software to combine two confocal image stacks to generate high-quality isotropic images. This method requires only conventional confocal microscopy to generate high-quality images that allow for the reliable tracing of dendritic branches, without resorting to super-resolution microscopy, such as STED (Stimulated Emission Depletion) or structural illumination. Second, we present a method for tracing dendritic arbors and for registering the resulting neurite traces to a reference column array. Third, we show the computational methods for extracting information on the planar projection direction and layer-specific termination of dendrites, as well as for deriving estimates for dendritic branching and termination frequencies. Together, these methods allow for the characterization of dendritic patterns in 3D, the classification of cell types based on dendritic morphologies, and the identification of potential defects in mutants.
Access restricted. Please log in or start a trial to view this content.
Note: The protocol contains three sections: dual-view imaging (sections 1 - 3), dendritic tracing and registration (sections 4 - 6), and dendritic analysis (sections 7 - 9) (Figure 1). The codes and example files are provided in Table of Materials/Equipment.
1. Dual-image Acquisition
NOTE: This step is designed to acquire two image stacks of the neuron of interest in two orthogonal (horizontal and frontal) orientations.
2. Image Deconvolution
NOTE: The deconvolution step uses image deconvolution software to restore the acquired images that are degraded by blurring and noise. While this step is optional, it significantly improves image quality. It is recommended to use deconvolved image stacks for image registration and combination in section 3.
3. Dual-view Image Combination
Note: This step combines two image stacks to generate high-resolution 3D images using the MIPAV software.
4. Neurite Tracing and Reference Point Assignment
NOTE: This step is to trace neurites (4.1) and to assign reference points for registration (4.2) using the image visualization software.
5. Rigid-body and TPS Nonlinear Registration
NOTE: This step is to register the neurite traces (in iv format) to the reference column array and to generate a registered swc file using the MIPAV program. This section requires the following files: the recombined image stack (.ids) from step 3.3, the reference point file (.csv) from step 4.2, and the neurite trace filament file (.iv) from step 4.1.
6. Standardization to Right-ventral Configuration
NOTE: This step is to convert the neurite traces (in swc format) to standard RV (right-ventral) configuration using the custom script "RV_standardization.m." Here, the script was written in the matrix laboratory language. The names of the input swc files should be in the following format: "NeuronName_Number_Configuration.swc" (e.g., Tm20_3_LV.swc).
7. Calculate Dendritic Branching and Terminating Frequencies
NOTE: This step uses rigid-body registered swc files to calculate the Kaplan-Meier estimators for the probability that a dendritic segment will reach a given length without terminating. This script uses two Dendritic_Tree_Toolbox functions: extractDendriticSegmentLengthDistribution and estimateDendriticSegmentLengthProbability.
8. Plot the Distribution of Layer-specific Termination of Dendritic Arbors
NOTE: This step plots the distribution of dendritic terminals in different medulla layers as a bar graph. This can be applied to one neuron, a group of neurons, or groups of neurons. The script uses the extractDistributionAlongAxis function from Dendritic_Tree_Toolbox.
9. Plot the Planar Projection Direction of Dendrites
NOTE: This step plots the planar projection directions of dendrites as a polar plot. The script uses the extractAngularDistribution function from Dendritic_Tree_Toolbox.
Access restricted. Please log in or start a trial to view this content.
Using the dual-view imaging procedure presented here, a fly brain containing sparsely labeled Tm20 neurons was imaged in two orthogonal directions. Prior to imaging, the brain was stained with appropriate primary and secondary antibodies for visualizing membrane-tethered GFP and photoreceptor axons. For imaging, the brain was first mounted in the horizontal orientation (Figure 2A, B). A GFP-labeled Tm20 neuron and the surrounding photoreceptor axons were imaged using...
Access restricted. Please log in or start a trial to view this content.
Here, we show how to image and analyze dendritic arbors of Drosophila medulla neurons. The first section, dual-view imaging, describes the deconvolution and combination of two image stacks into a high-resolution image stack. The second section, dendrite tracing and registration, describes the tracing and registration of dendrites of medulla neurons to the reference column array. The third section, dendritic analysis, describes the use of custom scripts to analyze dendritic patterns. Together these protocols prov...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
This work was supported by the Intramural Research Program of the National Institutes of Health, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (grant HD008913 to C.-H.L.), and the Center for Information Technology (P.G.M., N.P., E.S.M., and M.M.).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Software | |||
Huygens Professional | Scientific Volume Imaging | version 16.05 | for image deconvolution (https://svi.nl). commercial software |
MIPAV | version 7.3.0 | for image recombination and registration (http://mipav.cit.nih.gov/); freeware | |
MIPAV plugin: PlugInDrosophila RetinalRegistration.class | freeware | ||
MIPAV plugin: PlugInDrosophilaStandard ColumnRegistration.class | freeware | ||
Imaris | Bitplane | for tracing neurites and assigning reference points for image registration (http://www.bitplane.com); commercial software | |
Vaa3D | for visualizing swc files (https://github.com/Vaa3D/release/releases/); freeware | ||
Matlab | Mathworks | R2014b | for morphometric analysis of dendrites (http://www.mathworks.com); commercial software |
Matlab toolbox: TREES1.14 | v1.14 | for analyzing dendritic morphometric parameters (http://www.treestoolbox.org/download.html); freeware | |
Matlab toolbox: Dendritic_Tree_Toolbox | v1.0 | For calculating morphometric parameters (https://science.nichd.nih.gov/confluence/display/snc/Data+collections+for+imagines+combination+and+standardize+column+registration). Freeware | |
Name | Company | Catalog number | Comments |
Sample files | |||
SWC file definition | http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/Spec.html | ||
The codes and sample files for image combination and registration | https://science.nichd.nih.gov/confluence/display/snc/Data+collections+for+imagines+combination+and+standardize+column+registration | ||
Reference point example | https://science.nichd.nih.gov/confluence/download/attachments/117216914/points.csv?version=1&modificationDate= 1471880596000&api=v2 | ||
Name | Company | Catalog number | Comments |
Computer system | |||
MS Windows Windows 7 x64 or Macintosh OS X 10.7 or later | 3GHz 64-bit quad-core processor, 16G RAM (minimal) | ||
Optional: Quadro4000 (or above) graphic card | Nvidia | for stereographic visualization of dendrites. | |
Optional: NVIDIA 3D vision2 | Nvidia | http://www.nvidia.com/object/3d-vision-main.html | |
Optional: 120 Hz LCD display for NVIDIA 3D vision2 | http://www.nvidia.com/object/3d-vision-system-requirements.html | ||
Name | Company | Catalog number | Comments |
Reagents for imaging | |||
24B10 antibody | The Developmental Studies Hybridoma Bank | 24B10 | |
GFP Tag Antibody | Thermofisher Scientific | G10362 | |
Goat anti-Rabbit (H+L), Alexa Fluor 488 | Thermofisher Scientific | A11034 | |
Goat anti-Mouse (H+L), Alexa Fluor 568 | Thermofisher Scientific | A21124 | |
VECTASHIELD Antifade Mounting Medium | Vector Laboratories | H-1000 | |
Mounting Clay | Fisher | S04179 | |
70% glycerol in 1x PBS | |||
Cover glasses, high performance, D = 0.17 mm | Zeiss | 474030-9000-000 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone