Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol aims to present a general method to visualize lignin, cellulose, and hemicellulose in plant cell walls using Raman imaging and multivariate analysis.
The application of Raman imaging to plant biomass is increasing because it can offer spatial and compositional information on aqueous solutions. The analysis does not usually require extensive sample preparation; structural and chemical information can be obtained without labeling. However, each Raman image contains thousands of spectra; this raises difficulties when extracting hidden information, especially for components with similar chemical structures. This work introduces a multivariate analysis to address this issue. The protocol establishes a general method to visualize the main components, including lignin, cellulose, and hemicellulose within the plant cell wall. In this protocol, procedures for sample preparation, spectral acquisition, and data processing are described. It is highly dependent upon operator skill at sample preparation and data analysis. By using this approach, a Raman investigation can be performed by a non-specialist user to acquire high-quality data and meaningful results for plant cell wall analysis.
Plant biomass is the most abundant renewable resource on Earth; is mainly composed of lignin, cellulose, and hemicellulose; and is considered an attractive source of bioenergy and bio-based chemicals1. Unfortunately, it can resist degradation and confer hydrolytic stability or structural robustness to the plant cell wall. Such resistance is attributable to the accessible surface area, biomass particle size, degree of polymerization, cellulose crystallinity, and protective lignin2. A comprehensive understanding of the structural and chemical nature of the plant cell wall is thus significant from the viewpoint of plant biology and chemistry, as well as from that of commercial utilization. Commonly used wet chemistry analyses, such as chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy, only provide average compositional data of the measured sample. Furthermore, these methods are invasive and destroy the original structure of the plant tissue3.
The Raman imaging technique is a powerful tool for the nondestructive visualization of spatially resolved chemical information4. It uses a laser light to cause inelastic scattering with a photon and relies on changes in polarizability arising from the molecular vibrations. In this case, water causes weak Raman scattering, which makes this approach suitable for in situ investigations of biological samples5. The application of the Raman imaging technique to the plant cell wall can elucidate the structure and composition of plant cell walls in their native state, with the resolution on the scale of the single cell and even of the cell wall layers6. A typical Raman imaging analysis of a plant cell wall generally consists of three steps: 1) sample preparation, 2) spectral acquisition, and 3) data processing.
Although one of the major advantages of Raman imaging is the ability to achieve label-free and non-destructive spectra with minimal sample preparation, physical sample sectioning is still necessary to expose the surface of interest. This process should be performed carefully to obtain a flat surface, since the technique depends on maintaining optical focus7. Spectral acquisition requires a balance between image quality and extensive acquisition times8. Data processing aims to effectively extract the chemical information from the image data, especially for the components with similar chemical structures, such as cellulose and hemicellulose. Due to the strong spectral overlap, the exact spectra are difficult to discern. In this case, multivariate analysis is a straightforward approach to effectively uncover the hiding structural and chemical information9. This work presents a general protocol describing the use of Raman imaging to visualize the main components in plant cell walls, including lignin, cellulose, and hemicellulose.
1. Sample Preparation
2. Spectral Acquisition
3. Data Analysis
Figure 1 presents an overview of a typical micro-Raman system for the Raman imaging of a plant cell wall. As an example, the original Raman spectra of poplar (Populus nigra L.) have significant baseline drifts and spikes (Figure 2a). After performing the automatic pre-processing method for Raman imaging data set (APRI), these two spectral contaminants are successfully removed (Figure 2b). A ...
The plant cell wall is a composite that is organized into several layers, including cell corner (CC), secondary wall (SW, with the S1, S2, and S3 layers), and compound middle lamella (CML, middle lamella plus the adjacent primary wall), which makes it difficult to obtain a flat surface during sample preparation. Thus, plant samples, especially grass, which has a more complicated structure than wood, often need to be solidified to allow for fine sectioning. PEG is an ideal hard matrix for cutting and Raman investigation, ...
The authors have nothing to disclose.
We thank the China Ministry of Science and Technology (2016YDF0600803) for the financial support.
Name | Company | Catalog Number | Comments |
Microtome | Thermo Scientific | Microm HM430 | |
Confocal Raman microscope | Horiba Jobin Yvon | Xplora | |
Oven | Shanghai ZHICHENG | ZXFD-A5040 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone