Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Lens-free video microscopy enables us to monitor cell cultures directly inside the incubator. Here we describe the full protocol used to acquire and analyze a 2.7 day long acquisition of cultured HeLa cells, leading to a dataset of 2.2 x 106 measurements of individual cell morphology and 10584 cell cycle tracks.
Here, we demonstrate that lens-free video microscopy enables us to simultaneously capture the kinetics of thousands of cells directly inside the incubator and that it is possible to monitor and quantify single cells along several cell cycles. We describe the full protocol used to monitor and quantify a HeLa cell culture for 2.7 days. First, cell culture acquisition is performed with a lens-free video microscope, and then the data is analyzed following a four-step process: multi-wavelength holographic reconstruction, cell-tracking, cell segmentation and cell division detection algorithms. As a result, we show that it is possible to gather a dataset featuring more than 10,000 cell cycle tracks and more than 2 x 106 cell morphological measurements.
Monitoring cultured mammalian cells throughout several cell cycles and measuring accurately cell size and cell dry mass is a challenging task. Several label-free optical techniques are able to perform this task1,2: phase-shifting interferometry3, digital holographic microscopy (DHM)4,5,6,7, quadriwave lateral shearing interferometry8,9 and quantitative phase tomography10,11. These methods have led to many new insights into the understanding of the cell cycle of mammalian cells. However they are seldom coupled with automatic cell tracking algorithms and their throughput remains limited when measuring cell mass trajectories1 (N<20 in respectively3,4,5,6). Hence a novel optical method is needed to measure cell mass trajectories with large statistics (N>1000).
In this paper, we demonstrate the capability of lens-free video microscopy to simultaneously image thousands of cells directly inside the incubator, and then quantify single cell metrics along thousands of individual cell cycle tracks. Lens-free microscopy is a quantitative phase imaging technique which allows the acquisition of phase image of densely packed cells over a very large field of view (typically several tens of mm2, here 29.4 mm2)12,13,14,15. Several metrics at the single cell level are determined, e.g., cell area, cell dry mass, cell thickness, cell major axis length and cell aspect ratio12,15, from each image. Then, by applying a cell-tracking algorithm, these features can be plotted for every single cell as a function of the experiment time14,15. Furthermore, by detecting the occurrence of cell divisions in the cell tracks, it is possible to extract other important information such as the initial cell dry mass (just after the cell division), the final cell dry mass (just before the cell division) and the cell cycle duration, i.e., the time between two consecutive divisions15. All these measurements can be computed with very good statistics (N>1000) since the large field of view would typically allow the analysis of 200 to 10,000 cells in a single lens-free acquisition.
In order to explain this methodology based on lens-free video microscopy, we describe the protocol to monitor and quantify a HeLa cell culture for 2.7 days. Data analysis is a four-step process based on multi-wavelength holographic reconstruction, cell-tracking, cell segmentation and cell division algorithms. Here it is shown that the spatial resolution and the relatively fast frame rate (one acquisition every 10 minutes) obtained with this lens-free video microscopy setup is compatible with standard cell-tracking algorithms. The full analysis of this dataset results in the measurement of 10,584 cell tracks over complete cell cycles.
To summarize, lens-free video microscopy is a powerful tool to automatically monitor thousands of unlabeled, unsynchronized, and unmodified cells per experiment; each cell being tracked over several cell cycles. Our measurements thus provide the mean value of several cell parameters, but more importantly, the inter-cell variability over a large population of cells.
1. Cell Culture Monitoring Acquisition
2. Cell Culture Data Analysis
For the holographic reconstruction process, the light field is described by a scalar field A (where is the complex value of A on the plane at distance z from the sample, and lateral position
and at wavelength λ). Light propagation is modeled by the Huygens-Fresnel theory which provides a propagator kernel
In this paper, we show that lens-free video microscopy can be used inside an incubator to capture the kinetics of thousands of cells. In order to describe the overall methodology we explained how a 2.7 day time-lapse acquisition of HeLa cells in culture can be analyzed with standard cell-tracking algorithms. The result is a dataset featuring 2.2 x 106 cell measurements and 10,584 cell cycle tracks. The acquisitions were performed on a culture of Hela cells with a relatively large cell-to-cell distance (cell de...
The authors have nothing to disclose.
The authors have nothing to acknowledge.
Name | Company | Catalog Number | Comments |
Cytonote lens-free video microscope | Iprasense | ||
Horus acquisition software | Iprasense | ||
6-well glass bottom culture plates | MatTek corporation | Part No: P06G-0-14-F | |
DMEM + GlutaMAX medium | Gibco | ||
heat-inactivated fetal calf serum | Eurobio | ||
penicillin and streptomycin | Gibco | ||
Fibronectin | Sigma Aldrich | ||
Matlab, image processing toolbox | Mathworks |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone