Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This manuscript describes the procedures to perform anogenital distance (AGD) and perineal measurements standardized by the Pelvic Organ Prolapse Quantification System (POP-Q): perineal body (PB) and genital hiatus (GH). These measurements are compared in women with and without pelvic organ prolapse.
Anogenital distance (AGD) is a sexually dimorphic attribute, twice longer in males than in females, and a marker of intrauterine hormonal environment. Interest in AGD measurements is increasing due to mounting evidence on their potential clinical implications. A parallel set of perineal measurements, the Pelvic Organ Prolapse Quantification System (POP-Q), include similar, but not exactly the same, landmarks: the perineal body (PB) and the genital hiatus (GH) lengths. However, clinical reproducibility of both perineal measurements and their usefulness to describe perineal anthropometry needs to be elucidated. To our knowledge, there is no publication in video format showing the methodology of these measurements. The main objective of this work is to show how to properly perform perineal anthropometry, including measurements of the AGD in its two variants [anoclitoral (AGDAC) and anofourchette (AGDAF)], genital hiatus (GH) and perineal body (PB). Moreover, we explored if there were differences in these measurements in women with and without Pelvic Organ Prolapse (POP). We research whether the anthropometric characteristics of the perineum, such as AGD (which is determined prenatally), may be altered in these women and be an independent etiological factor for pelvic floor dysfunction. We show two different ways of measuring perineal lengths, as they might be quite comparable. Our suggestion is that unifying perineal measurements could be useful for clinical and biomedical investigation. More studies are needed in order to compare GH and PB measurements and its AGD counterparts to analyze which procedures are more reproducible with less intra and interobserver variability.
Anogenital distance (AGD) is an easily accessible and noninvasive anthropometric measurement (Figure 1). AGD is a sexual dimorphism in placental mammals, being almost twice longer in males than in females. It is considered a marker of intra uterus hormonal environment1,2. AGD has been related to prenatal exposure to endocrine disruptors3,4,5 and androgens during critical periods of genital development6,7. In prenatal consultations, AGD may be useful to determine fetus gender with great accuracy in the first trimester (scan at 11-13 ± 6 weeks of gestation)8,9. In adult women, AGD length is associated with the female reproductive function10,11,12,13. Longer AGD distances in adult women have been associated in cross-sectional studies to a higher number of ovarian follicles10 and to higher testosterone levels11. Young women with longer AGD were several times more likely to have had mothers with irregular menstrual cycles, suggesting that the potentially hyperandrogenic intrauterine environment of the mother was sufficient to modify the female offspring's reproductive tract12. Recently, Wu et al.14 have shown that the presence of polycystic ovarian syndrome (PCOS) is associated with longer AGD measurements in Chinese women, and Barrett et al.15 have also reported longer AGD in newborn daughters of women with PCOS15. Our research group have also confirmed this finding in adult Mediterranean women16. On the other hand, AGD is negatively and strongly associated with the presence and severity of endometriosis17, suggesting the potential of AGD as a biomarker of developmental antiandrogen/estrogen exposure. There is still controversy about the definitions and measurements of the female perineal and genital area. Previous human studies have applied a variety of measurements when referring to AGD. In women, some modification has been observed in the anatomical references for AGD measures. When AGD was firstly described and measured in women, the lower reference for the anatomical landmark was the "middle" anus. Nowadays, the lower reference is established as the top margin of the anus as it is a more accurate reference, making AGD a more reproducible measure18. AGD measurements must be corrected by weight or BMI as they are anthropometric measurements associated with body size19.
A similar set of measurements are the Pelvic Organ Prolapse Quantification System (POP-Q)20 that includes two perineal measurements: the perineal body (PB) length and genital hiatus (GH) length (Figure 1). These measurements have been standardized according to the International Continence Society and are commonly used in clinical practice and biomedical studies, especially in women with pelvic organ prolapse (POP)21. PB is the measurement taken from the posterior margin of the genital hiatus to the midanal opening and is equivalent to AGDAF (ano-fourchette). GH does not correlate exactly with DAGAC (anoclitoral), although it would be its analog measurement. Women with POP have a strong familial association22, and parity is also considered a risk factor for POP23. However, there is no data to presume that they have been subjected to abnormal hormonal environments and may associated to other reproductive problems. Because of the similarities of the measurements, however, we hypothesize that women with shorter PB would have shorter AGDAF as well.
In this paper, we present both procedures and assess their similarities to ensure uniformity of these measurements in research and clinical practice. To our knowledge, there is no video publication showing how to perform these measurements. The main objective of this study was to show how to perform both AGD measurements: ano-clitoral (AGDAC) and ano-fourchette (AGD AF), and how to measure GH and PB lengths. A secondary objective was to compare both sets of anthropometric measures in women with POP (cases) and asymptomatic women without pelvic floor dysfunction (control women).
A case-control study was conducted from August 2014 to June 2015 at the Department of Obstetrics and Gynecology of the University Clinical Hospital 'Virgen de la Arrixaca' in the Murcia Region (southeastern Spain). Cases were women over 40 years of age seeking care for genital lumps. If POP was confirmed in the gynecological examination and classified as stage II or more by the POP-Q classification20, women were invited to participate, regardless of the affected compartment (anterior, middle or posterior). Women with stress urinary incontinence that requires surgical treatment were excluded. Controls were women of similar age seeking routine gynecological exams with neither pelvic floor disease nor other gynecological conditions such as adnexal disease or uterine fibroids. The exclusion criteria for both cases and controls were the following: previous corrective surgery for pelvic floor disease or urinary incontinence; an active tumor that alters the mechanics and biometry of the pelvic floor; an active infection of external anogenital tract; and external hemorrhoids. Women having locomotor impairment preventing the physicians from taking the measurements were also excluded. A complete gynecological and obstetrical history was performed including menstrual and obstetric formulae (parity, vaginal and instrumented deliveries and birthweight) as well as medical and surgical history, and BMI. Women were questioned about symptoms of POP and/or urinary incontinence using the ICIQ-F questionnaires24 and Sandvik severity index25.
The pelvic status was assessed using the POP-Q classification system. A test of stress urinary incontinence was performed by emptying the bladder and introducing 300 mL of saline with a disposable urinary catheter. The patients performed Valsalva maneuvers with prolapse, and after reducing the prolapse, occult stress urinary incontinence was diagnosed. A 2D-transvaginal ultrasound was performed to rule out uterine or adnexal disease.
This study was approved by the Ethics Research Committee of the University of Murcia. Written informed consent was obtained from all participants.
1. Perineum Measurements
NOTE: Before taking the measurements, two observers have to be trained to minimize inter-observer variability.
Fifty-eight patients were included. Previous studies in women have reported that the minimum AGD distances was 24 mm12 with a standard deviation of about 10 mm12. The minimum sample size to detect a significant difference between the groups with respect to AGDAC (type I error α=0.05 and type II error β = 0.1) was estimated to be 25 individuals in each group (50 in total), based on a difference of at least 12 mm in AGD
The article shows the procedure to carry out the perineal measurements according to both the AGD concept and the POP-Q system. Both procedures are described with different measurement systems: the AGD measurement with calipers in millimeters, and the POP-Q measurement with a ruler in centimeters. It would be desirable to unify the measuring instruments and the accuracy of the methods, and not just the landmarks. This is of great importance, since the more reproducible a measure is, the more reliable it will be. That will...
The authors have nothing to disclose.
This work was supported by the Ministry of Economy and Competitiveness, ISCIII (AES), grants no PI13/01237 and the Seneca Foundation, Murcia Regional Agency of Science and Technology, grant no 19443/PI/14. Funding to pay the Open Access publication charges for this article was provided by the Ministry of Economy and Competitiveness, ISCIII (AES), grant no PI13/01237.
Name | Company | Catalog Number | Comments |
Digital Caliper. Stainless Steel Digital Caliper | VWR International, LLC, West Chester, PA, USA | 76181-562 OS ABS DIGTL CALIPER 500-171-30 STAIN | Absolute Digimatic Calipers, Stainless Steel, SPC, Accuracy +/-0.001in, Batt. Life 3.5 Years (20,000 hours), Display Type Digital LCD, Measurement Type ABS, Range 6in, Resolution (Length) 0.000500 in, Tip |
Voluson E8 | General Electric Healthcare | ||
Sterile Utility Skin Marker and Ruler | Medline | DYNJSM06 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone