JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Using multi-step culture systems, we report an in vitro B cell to plasma cell differentiation model.

Streszczenie

Plasma cells (PCs) secrete large amounts of antibodies and develop from B cells that have been activated. PCs are rare cells located in the bone marrow or mucosa and ensure humoral immunity. Due to their low frequency and location, the study of PCs is difficult in human. We reported a B to PC in vitro differentiation model using selected combinations of cytokines and activation molecules that allow to reproduce the sequential cell differentiation occurring in vivo. In this in vitro model, memory B cells (MBCs) will differentiate into pre-plasmablasts (prePBs), plasmablasts (PBs), early PCs and finally, into long-lived PCs, with a phenotype close to their counterparts in healthy individualsWe also built an open access bioinformatics tools to analyze the most prominent information from GEP data related to PC differentiation. These resources can be used to study human B to PC differentiation and in the current study, we investigated the gene expression regulation of epigenetic factors during human B to PC differentiation.

Wprowadzenie

The differentiation of B cells to plasma cells (PCs) is essential for humoral immunity and protect the host against infections1. B to PC differentiation is associated with major changes in transcription capacity and metabolism to accommodate to antibody secretion.The transcription factors that control B to PC differentiation have been extensively studied and revealed exclusive networks including B- and PC-specific transcription factors (TFs)2. In B cells, PAX5, BCL6 and BACH2 TFs are the guardians of B cell identity2,3. Induction of IRF4, PRDM1 encoding BLIMP1 and XBP1 PC TF will extinguish B cell genes and induce a coordinated antibody-secreting cell transcriptional program3,4,5. These coordinated transcriptional changes are associated with Ig genes transcription activation together with a switch from the membrane-bound form to the secreted form of the immunoglobulin heavy chain2,3,4. B to PC differentiation is linked with induction of genes involved in endoplasmic reticulum and Golgi apparatus functions concomitant with unfolded protein response (UPR) activation known to play a key role in PC by accommodating the synthesis of secreted immunoglobulins6,7. The TF XBP1 plays a major role in this cellular adaptation8,9,10.

B cells and PCs are key players of humoral immunity. Understanding the biological processes that control the production and the survival of normal plasma cells is critical in therapeutic interventions that need to ensure efficient immune responses and prevent autoimmunity or immune deficiency. PC are rare cells with early differentiation stages taking place in anatomic locations that hamper full biological characterization, particularly in human. Using multi-step culture systems, we have reported an in vitro B to PC differentiation model. This model reproduces the sequential cell differentiation and maturation occurring in the different organs in vivo11,12,13In a first step, memory B cells are first activated for four days by CD40 ligand, oligodeoxynucleotides and cytokine combination and differentiate into preplasmablasts (PrePBs). In a second step, preplasmablasts are induced to differentiate into plasmablasts (PBs) by removing CD40L and oligodeoxynucleotides stimulation and changing the cytokine combination. In a third step, plasmablasts are induced to differentiate into early PCs by changing the cytokine combination11,12. A fourth step was introduced to get fully mature PCs by culturing these early PCs with bone marrow stromal cells conditioned medium or selected growth factors13. These mature PCs could survive several months in vitro and secrete high amounts of immunoglobulin (Figure 1). Interestingly, our in vitro model recapitulates the coordinated transcriptional changes and the phenotype of the different B to PC stages that can be detected in vivo11,12,13,14,15. PCs are rare cells and our in vitro differentiation model allows to study human B to PC differentiation.

Protokół

The protocol follows the guidelines in accordance with the Declaration of Helsinki and agreement of the Montpellier University Hospital Centre for Biological Resources.

1. In Vitro Normal Plasma Cell Differentiation Model

NOTE: PCs are generated through a four-step culture11,12,13.

  1. B cell amplification and differentiation
    1. Use peripheral blood cells from healthy volunteers for memory B cell purification.
    2. Dilute 7.5 mL of blood with 24.5 mL of RPMI 1640 medium.
    3. Add 12.5 mL of room temperature density gradient (e.g., Ficoll) to a sterile 50 mL conical tube. Gently overlay the density gradient with the 32 mL of diluted blood. Minimize the mixing of the two phases.
    4. Centrifuge 20 min at 500 x g with the brake off. Collect the PBMCs from the diluted plasma/density gradient interface and place the cells in a sterile 50 mL tube and complete to 45 mL with Hank's balanced salt solution.
    5. Centrifuge the cells for 5 min at 500 x g. Carefully remove the supernatant and keep the pellet.
    6. Add 45 mL of RPMI1640/10% fetal calf serum (FCS) and centrifuge 5 min at 500 x g. Carefully remove the supernatant and keep the pellet. Add 30 mL of PBS/2% FCS.
    7. Remove CD2+ cells using anti-CD2 magnetic beads. Add 4 beads for one target cell. Incubate 30 min at 4 °C.
      1. Separate bead-bound cells from unbound cells using a magnet for cell separation application. Collect unbound cells and incubate the cell pellet with anti CD19 APC and anti CD27 PE antibodies for 15 minutes at 4 °C (2 µL of antibody for 106 cells).
      2. Wash twice in PBS/10% goat serum.
      3. Remove contaminating events on both FSC and SSC plots. Plot singlets on FSC-A vs FSC-H and SSC-A vs SSC-H plots to remove debris and to select the total leukocyte population. Select memory B cells on CD19/CD27 and CD19+CD27+.
      4. Purify MBCs using a cell sorter with a 95% purity.
    8. Perform all the culture steps using IMDM and 10% FCS, supplemented with 50 mg/mL human transferrin and 5 mg/mL human insulin.
    9. Plate purified MBCs in six-well culture plates (1.5 x 105 MBCs/mL in 5 mL/well), for 4 days, with IL-2 (20 U/mL), IL-10 (50 ng/mL), and IL-15 (10 ng/mL).
      1. Add Phosphorothioate CpG ODN 2006, histidine-tagged recombinant human soluble CD40L (sCD40L; 50 ng/mL) and anti-polyhistidine mAb (5 mg/mL) for MBCs activation (Figure 1). Activation by sCD40L or ODN only with the same cytokine cocktail yields to lower amplification12. The combination of activation signals described here leaded to the maximum number of activated B cells and PrePBs11,12 (Figure 1).
      2. For gene expression profiling, purify CD38-/CD20- PrePBs, at day 4, using a cell sorter (Figure 2).
  2. Plasmablastic cell generation
    1. At day 4, count the cells.
    2. Plate cells in 12-well culture plates at 2.5 x 105/mL in 2 mL/well.
    3. Induce differentiation by removal of CpG oligonucleotides and sCD40L and addition of a new culture medium with a new cytokine cocktail including IL-2 (20 U/mL), IL-6 (50 ng/mL), IL-10 (50 ng/mL) and IL-15 (10 ng/mL) (Figure 1). Culture cells for 3 days (from day 4 to day 7) at 37 °C.
    4. For gene expression profiling, purify CD38+/CD20- PBs, at day 7, using a cell sorter (Figure 2).
  3. Early plasma cell generation
    1. At day 7, count the cells.
    2. Plate cells in 12-well culture plates at 5 x 105/mL in 2 mL/well.
    3. Differentiate PB in early PCs using fresh culture medium with IL-6 (50 ng/mL), IL-15 (10 ng/mL) and IFN-α (500 U/mL) for 3 days at 37 °C. For gene expression profiling, purify CD20-/CD38+/CD138+ early PCs, at day 10, using a cell sorter (Figure 2).
  4. Long-lived plasma cell generation
    1. Differentiate Early PCs into long lived PCs by changing the culture conditions.
    2. Culture the cells in 12-well culture plates at 5 x 105/mL in 2 mL/well or in 24-well culture plates in 1 mL/well at 37 °C, using IL-6 and stromal cell conditioned medium and APRIL (200 ng/mL).
    3. Obtain stromal cell-conditioned medium by culturing stromal cells for 5 days with culture medium. Filter the stromal cell culture supernatant (0.2 µm) and freeze.
    4. Add 50% of stromal cell-conditioned media to PC cultures with renewal every week. Generated long-lived PCs could be maintained for months13. Long term survival of PCs could be obtained with IL-6 and APRIL only as reported13.
    5. Measure Ig secretion from flow cytometry sorted PCs.
    6. Culture PCs at 106 cells/mL for 24 h and harvest culture supernatant. Measure IgG and IgA using human enzyme-linked immunosorbent assay (ELISA) kits11,12,13. The median IgG secretion ranged from 10 pg/cell/day at day 10 to 17 pg/cell/day at day 6013.

2. Molecular Atlas of B to PC Differentiation

NOTE: We built a convenient and open access bioinformatics tools to extract and visualize the most prominent information from Affymetrix GEP data related to PC differentiation (GenomicScape)15. GEP are publicly available from ArrayExpress database (http://www.ebi.ac.uk/arrayexpress/) including purified MBCs, PrePBs, PBs and EPCs: E-MTAB-1771, E-MEXP-2360 and E-MEXP-3034 and BMPC E-MEXP-236014,15. Genomicscape is a freely available webtool.

  1. Selection of B to PC dataset
    1. Select B to PC dataset in the Browse Data menu in GenomicScape open access bioinformatic tool (http://www.genomicscape.com) called Human B cells to plasma cells. Visualization of gene expression profile of unique gene or a list of genes is available using the Expression-Coexpression Report tool in the Analysis Tools available in the home page.
  2. Supervised analysis and principal component analysis (PCA)
    1. Select Analysis Tools | webSAM to load the SAM tool.
    2. Choose the Human B cells to plasma cells dataset and select the groups of samples to compare.
    3. Use the different filters available to apply the filtering options of interest.
    4. To compare gene expression profiles with SAM tool, modify the filtering options including Fold change, number of permutations, False discovery rate and the type of comparison. GenomicScape will compute the analysis and provide genes differentially expressed between the selected groups.
    5. Run principal component analysis by selecting Principal Component Analysis in Analysis Tools menu.
    6. Choose the Human B cells to plasma cells dataset and select the groups of interest.
    7. Paste a list of genes of interest or select genes according to the variance. To paste a list of genes, select To analyse a list of genes/ncRNAs, click here…. Genomicscape will compute PCA that could be visualized and downloaded.

Wyniki

The overall procedure of in vitro normal PC differentiation is represented in Figure 1. Using the protocol presented here, we could generate adequate quantity of cells that could not be obtained with ex vivo human samples. Although the role of the complex network of transcription factors involved in PC differentiation has been investigated, the mechanisms regulating key PC differentiation transcription networks remain poorly known. Cellular differentiation is...

Dyskusje

In human, PC are rare cells with differentiation stages taking place in anatomic places that hamper full biological characterization. We have developed an in vitro B to PC differentiation model using multi-step culture systems where various combinations of activation molecules and cytokines are subsequently applied in order to reproduce the sequential cell differentiation occurring in the different organs/tissues in vivo11,12,13...

Ujawnienia

The authors have nothing to disclose

Podziękowania

This work was supported by grants from French INCA (Institut National du Cancer) Institute (PLBIO15-256), ANR (Tie-Skip) and ITMO Cancer (MM&TT).

Materiały

NameCompanyCatalog NumberComments
anti-CD2 magnetic beadsInvitrogen11159D
Anti-CD138-APCBeckman-Coulter B49219
Anti-CD19-APCBD555415
Anti-CD20-PBBeckman-Coulter B49208
Anti-CD27-PEBD555441
Anti-CD38-PEBeckman-Coulter A07779
Anti-histidineR&D SystemsMAB050
CpG ODN(PT)SigmaT*C*G*T*C*G*T*T*T*T*G*T*C*
G*T*T*T*T*G*T*C*G*T*T
human TransferinSigma-AldrichT3309
IFN-αMerckIntron A
IMDMGibco31980-022
Recombinan Human CD40L-hiR&D Systems2706-CL
Recombinant Human APRILR&D Systems5860-AP-010
Recombinant Human IL-10R&D Systems217-IL-
Recombinant Human IL-15Peprotech200-15-10ug
Recombinant Human IL-2 ProteinR&D Systems202-IL-
Recombinant Human IL-6Peprotech200-06

Odniesienia

  1. Shapiro-Shelef, M., Calame, K. Regulation of plasma-cell development. Nature Reviews Immunology. 5 (3), 230-242 (2005).
  2. Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M., Corcoran, L. M. The generation of antibody-secreting plasma cells. Nature Reviews Immunology. 15 (3), 160-171 (2015).
  3. Shaffer, A. L., et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity. 17 (1), 51-62 (2002).
  4. Minnich, M., et al. Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nature Immunology. 17 (3), 331-343 (2016).
  5. Klein, U., et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nature Immunology. 7 (7), 773-782 (2006).
  6. Gass, J. N., Gunn, K. E., Sriburi, R., Brewer, J. W. Stressed-out B cells? Plasma-cell differentiation and the unfolded protein response. Trends in Immunology. 25 (1), 17-24 (2004).
  7. Goldfinger, M., Shmuel, M., Benhamron, S., Tirosh, B. Protein synthesis in plasma cells is regulated by crosstalk between endoplasmic reticulum stress and mTOR signaling. European Journal of Immunology. 41 (2), 491-502 (2011).
  8. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107 (7), 881-891 (2001).
  9. Shaffer, A. L., et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 21 (1), 81-93 (2004).
  10. Reimold, A. M., et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 412 (6844), 300-307 (2001).
  11. Jourdan, M., et al. Characterization of a transitional preplasmablast population in the process of human B cell to plasma cell differentiation. Journal of Immunology. 187 (8), 3931-3941 (2011).
  12. Jourdan, M., et al. An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization. Blood. 114 (25), 5173-5181 (2009).
  13. Jourdan, M., et al. IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors. Leukemia. , (2014).
  14. Kassambara, A., et al. Global miRNA expression analysis identifies novel key regulators of plasma cell differentiation and malignant plasma cell. Nucleic Acids Research. 45 (10), 5639-5652 (2017).
  15. Kassambara, A., et al. GenomicScape: an easy-to-use web tool for gene expression data analysis. Application to investigate the molecular events in the differentiation of B cells into plasma cells. PLOS Computational Biology. 11 (1), 1004077 (2015).
  16. Miremadi, A., Oestergaard, M. Z., Pharoah, P. D., Caldas, C. Cancer genetics of epigenetic genes. Human Molecular Genetics. 16, 28-49 (2007).
  17. Pei, H., et al. The histone methyltransferase MMSET regulates class switch recombination. Journal of Immunology. 190 (2), 756-763 (2013).
  18. Le Gallou, S., et al. IL-2 requirement for human plasma cell generation: coupling differentiation and proliferation by enhancing MAPK-ERK signaling. Journal of Immunology. 189 (1), 161-173 (2012).
  19. Cocco, M., et al. In vitro generation of long-lived human plasma cells. Journal of Immunology. 189 (12), 5773-5785 (2012).
  20. Leung-Hagesteijn, C., et al. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell. 24 (3), 289-304 (2013).
  21. Orlowski, R. Z. Why proteasome inhibitors cannot ERADicate multiple myeloma. Cancer Cell. 24 (3), 275-277 (2013).
  22. Ding, B. B., Bi, E., Chen, H., Yu, J. J., Ye, B. H. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. Journal of Immunology. 190 (4), 1827-1836 (2013).
  23. Tsai, C. M., et al. Galectin-1 promotes immunoglobulin production during plasma cell differentiation. Journal of Immunology. 181 (7), 4570-4579 (2008).
  24. Tsai, C. M., et al. Galectin-1 and galectin-8 have redundant roles in promoting plasma cell formation. Journal of Immunology. 187 (4), 1643-1652 (2011).
  25. Anginot, A., Espeli, M., Chasson, L., Mancini, S. J., Schiff, C. Galectin 1 modulates plasma cell homeostasis and regulates the humoral immune response. Journal of Immunology. 190 (11), 5526-5533 (2013).
  26. Belnoue, E., et al. Homing and adhesion patterns determine the cellular composition of the bone marrow plasma cell niche. Journal of Immunology. 188 (3), 1283-1291 (2012).
  27. Belnoue, E., et al. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood. 111 (5), 2755-2764 (2008).
  28. Huard, B., et al. APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. Journal of Clinical Investigation. 118 (8), 2887-2895 (2008).
  29. Ame-Thomas, P., et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood. 109 (2), 693-702 (2007).
  30. Ramachandrareddy, H., et al. BCL6 promoter interacts with far upstream sequences with greatly enhanced activating histone modifications in germinal center B cells. Proceedings of the National Academy of Sciences of the United States of America. 107 (26), 11930-11935 (2010).
  31. Li, G., Zan, H., Xu, Z., Casali, P. Epigenetics of the antibody response. Trends in Immunology. 34 (9), 460-470 (2013).
  32. Miles, R. R., Crockett, D. K., Lim, M. S., Elenitoba-Johnson, K. S. Analysis of BCL6-interacting proteins by tandem mass spectrometry. Molecular & Cellular Proteomics. 4 (12), 1898-1909 (2005).
  33. McManus, S., et al. The transcription factor Pax5 regulates its target genes by recruiting chromatin-modifying proteins in committed B cells. The EMBO Journal. 30 (12), 2388-2404 (2011).
  34. Ahmadnejad, M., et al. Elevated expression of DNMT1 is associated with increased expansion and proliferation of hematopoietic stem cells co-cultured with human MSCs. Blood Research. 52 (1), 25-30 (2017).
  35. Beguelin, W., et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell. 23 (5), 677-692 (2013).
  36. Herviou, L., Cavalli, G., Cartron, G., Klein, B., Moreaux, J. EZH2 in normal hematopoiesis and hematological malignancies. Oncotarget. 7 (3), 2284-2296 (2016).
  37. Beguelin, W., et al. EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop. Nature Communications. 8 (1), 877 (2017).
  38. Herviou, L., et al. PRC2 targeting is a therapeutic strategy for EZ score defined high-risk multiple myeloma patients and overcome resistance to IMiDs. Clinical Epigenetics. 10 (1), 121 (2018).
  39. Asangani, I. A., et al. Characterization of the EZH2-MMSET histone methyltransferase regulatory axis in cancer. Molecular Cell. 49 (1), 80-93 (2013).
  40. Pei, H., et al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature. 470 (7332), 124-128 (2011).
  41. Cui, J., et al. EHMT2 inhibitor BIX-01294 induces apoptosis through PMAIP1-USP9X-MCL1 axis in human bladder cancer cells. Cancer Cell International. 15 (1), 4 (2015).
  42. Santo, L., et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood. 119 (11), 2579-2589 (2012).
  43. Amengual, J. E., et al. Dual Targeting of Protein Degradation Pathways with the Selective HDAC6 Inhibitor ACY-1215 and Bortezomib Is Synergistic in Lymphoma. Clinical Cancer Research. 21 (20), 4663-4675 (2015).
  44. Schoenhals, M., et al. Forced KLF4 expression increases the generation of mature plasma cells and uncovers a network linked with plasma cell stage. Cell Cycle. 15 (14), 1919-1928 (2016).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

In Vitro Differentiation ModelHuman Memory B CellsLong lived Plasma CellsPlasma Cell DifferentiationBioinformatic ToolsPeripheral Blood CellsMemory B Cell PurificationDensity Gradient CentrifugationPeripheral Blood Mononuclear CellsRPMI 1640 MediumAnti CD Magnetic BeadsCell SeparationCD19 APC AntibodyCD27 PE AntibodyMemory B Cell Activation

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone