JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Organoids developed from mouse mammary glands were irradiated and characterized to assess epithelial traits and interactions with immune cells. Irradiated organoids can be used to better evaluate cell-cell interactions that may lead to tumor cell recruitment in irradiated normal tissue.

Streszczenie

Organoids derived from the digested tissue are multicellular three-dimensional (3D) constructs that better recapitulate in vivo conditions than cell monolayers. Although they cannot completely model in vivo complexity, they retain some functionality of the original organ. In cancer models, organoids are commonly used to study tumor cell invasion. This protocol aims to develop and characterize organoids from the normal and irradiated mouse mammary gland tissue to evaluate the radiation response in normal tissues. These organoids can be applied to future in vitro cancer studies to evaluate tumor cell interactions with irradiated organoids. Mammary glands were resected, irradiated to 20 Gy and digested in a collagenase VIII solution. Epithelial organoids were separated via centrifugal differentiation, and 3D organoids were developed in 96-well low-adhesion microplates. Organoids expressed the characteristic epithelial marker cytokeratin 14. Macrophage interaction with the organoids was observed in co-culture experiments. This model may be useful for studying tumor-stromal interactions, infiltration of immune cells, and macrophage polarization within an irradiated microenvironment.

Wprowadzenie

Approximately 60% of the triple negative breast cancer (TNBC) patients choose breast-conserving therapy (BCT) as a form of treatment1. In this treatment modality, the tumor containing part of the breast tissue is removed, and the surrounding normal tissue is exposed to ionizing radiation to kill any residual tumor cells. Treatment reduces recurrence in much of the breast cancer population; however, approximately 13.5% of treated patients with TNBC experience locoregional recurrences2. Therefore, studying how radiation may recruit circulating tumor cells (CTCs) will lead to important insights into local recurrence3,4.

Previous work has shown that radiation of the normal tissue increases recruitment of various cell types5. In pre-clinical models of TNBC, irradiation of normal tissue increased macrophage and subsequently tumor cell recruitment to normal tissues5. Immune status influenced tumor cell recruitment to irradiated sites, with tumor cell migration observed in immunocompromised subjects. Recapitulating these interactions using organoids derived from mammary glands will allow the observation of cell migration and cell-stromal interactions in real time with microscopy and live cell imaging to determine the role of radiation damage in altering tumor cell behavior.

Mouse mammary organoids have helped elucidate key steps in the development of the mammary gland. A mammary organoid is a multicellular, three dimensional construct of isolated mammary epithelium that is larger than 50 μm6,7,8,9,10. Using primary epithelial organoids, Simian et al. evaluated necessary factors for branching in the mammary gland7. Shamir et al. discovered that dissemination can occur without an epithelial to mesenchymal transition, providing insight into the metastatic cascade8. Methods for generating and characterizing organoids from mammary gland tissue are well established6,11,12,13. However, to our knowledge, methods for growing irradiated organoids from mammary glands have not been reported. A protocol for growing and characterizing irradiated organoids would be a critical step in recapitulating radiation-induced immune and tumor cell recruitment.

In this paper, we report a method for growing and characterizing irradiated mammary epithelial organoids in low adhesion microplates coated with a hydrophilic polymer that supports the formation of spheroids. These organoids were co-cultured with macrophages to examine immune cell infiltration kinetics. This work can be extended to include co-culturing organoids with adipose cells to recapitulate mammary characteristics, breast cancer cells to visualize tumor cell recruitment, and CD8+ T cells to study tumor-immune cell interactions. Previously established protocols may be used to evaluate irradiated organoids. Earlier models co-culturing mammary organoids and immune cells have shed light on mechanisms of metastasis and dissemination. DeNardo et al. found that CD4+ T cell regulation of tumor associated macrophages enhanced a metastatic phenotype of mammary adenocarcinomas14. Co-culture models have also been used to elucidate mechanisms of biological development. Plaks et al. clarified the role of CD4+ T cells as down-regulators of mammary organogenesis15. However, our group is the first to establish a procedure of visualizing how normal tissue irradiation influences immune cell behavior. Because normal tissue irradiation has been shown to enhance tumor cell recruitment5, this protocol can be further developed to analyze how tumor cell behavior is altered by irradiation of normal tissue and cells, leading to a greater understanding of cancer recurrence.

Protokół

Animal studies were performed in accordance with institutional guidelines and protocols approved by the Vanderbilt University Institutional Animal Care and Use Committee.

1. Preparation of mice and cell acquisition (adapted from Nguyen-Ngoc et al.11)

  1. Sacrifice athymic Nu/Nu mice (8-10 weeks old) using CO­2 asphyxiation followed by cervical dislocation. Clean the skin using 70% ethanol.
  2. Resect abdominal and inguinal mammary glands from mice using pre-sterilized scissors and forceps. Remove lymph nodes before resection. Rinse in sterile 1x phosphate buffered saline (PBS) (Figure 1A).
  3. Place it in 15 mL tubes with 10 mL of Dulbecco’s Modified Eagle Media/Nutrient Mixture F12 (DMEM/F12) for transport. Samples can be kept overnight at 4 °C or processed immediately. Keep on ice.
  4. Irradiate samples at 20 Gy using a cesium source (Figure 1B).
  5. 45 min after irradiation, place mammary glands in a 35 mm sterile cell plate and mince with scalpels (Figure 1C,D). Mince with approximately 40 strokes until the tissue relaxes and pieces are obtained that are no larger than approximately 1 mm2 in area.
  6. Transfer to the collagenase solution in a 50 mL centrifuge tube. Collagenase solution consists of 2 mg/mL collagenase (see Table of Materials), 2 mg/mL trypsin, 5% v/v fetal bovine serum (FBS), 5 μg/mL insulin, and 50 μg/mL gentamicin in DMEM/F12 media. Use 10 mL collagenase solution per mouse.
  7. Place in a water bath at 37 °C, vortexing every 10 min for 30-60 min. Digestion is complete when the collagenase solution is cloudy (Figure 1E,F).
  8. Spin down the digested solution at 450 x g for 10 min at room temperature (RT). Three layers will be observed. The supernatant is composed of fat, the middle layer is an aqueous solution, and the bottom is a pellet. The pellet will appear red as it is a mixture of epithelial cells, individual stromal cells, and red blood cells (Figure 1G).
  9. Precoat all pipettes, pipette tips, and centrifuge tubes with bovine serum albumin (BSA) solution prior to contact. BSA solution consists of 2.5 w/v % BSA in Dulbecco’s Phosphate Buffered Saline (DPBS). For pre-coating, simply add then remove BSA solution to the inside of the pipette tip and tubes. BSA solution can be reused, although it should be sterile filtered before each experiment.
  10. For additional recovery, transfer the supernatant to a fresh BSA coated 15 mL tube. Pipette up and down vigorously to disperse fat layer. Centrifuge at 450 x g for 10 min at RT. Aspirate the supernatant, leaving a small amount of media in the tube to avoid aspirating the cell pellet.
  11. Aspirate the aqueous layer from the tube with the original pellet.
  12. Add 10 mL of DMEM/F12 to the tube with the original pellet and transfer to the second tube. Pipette vigorously to combine and resuspend the two pellets.
  13. Centrifuge at 450 x g for 10 min at RT. Aspirate the supernatant and add 4 mL of DMEM/F12 to the tube.
  14. Add 40 μL of deoxyribonuclease (DNase) to the suspension and gently shake by hand for 2-5 min at RT. DNase solution consists of 4 U/mL DNase in DMEM/F12.
  15. Add 6 mL of DMEM/F12 and pipette thoroughly. Centrifuge the tube at 450 x g for 10 min at RT.
  16. Aspirate supernatant to the 0.5 mL mark. Resuspend in 10 mL of DMEM/F12 and pipette thoroughly.
  17. Pulse to 450 x g and stop 4 s after reaching that speed.
  18. Repeat steps 1.16-1.17 three more times to purify organoids via centrifugal differentiation. The pellet should now be an off-white color consisting of only epithelial organoids (Figure 1H).
    NOTE: Organoids can also be filtered using sterile mesh 40 μm filters. After step 1.16, pipette media containing organoids through a filter into a centrifuge tube, and then rinse with 5 to 10 mL of DMEM/F12 media. Flip the filter over a new 50 mL centrifuge tube. Pass 10 mL of DMEM/F12 media through, going the opposite way to rinse off any retentate. The retentate should consist of organoids, and the filtrate should consist mainly of stromal cells, which can be discarded or kept if desired.

2. Determining density and plating organoids

  1. Resuspend pellet in 10 mL of DMEM/F12. Pipette thoroughly to create a homogenous solution.
  2. Transfer 50 µL to a 30 mm Petri dish, and view under a phase contrast microscope at 20x. Count the number of organoids with a tally counter.
    NOTE: Here pipette tips have been consistently used with a minimal diameter of 457 μm, which is 5-10 times the diameter of the organoids that are seeded. For transferring volumes of 2 mL or larger (e.g., steps 1.16 and 2.1), use serological pipettes with tip diameters excess of 1,500 μm.
  3. Calculate the organoid density using the following equation:
    figure-protocol-5244
    The desired density is 1,000 organoids/mL to simplify further dilution. If the density is too low, centrifuge at 450 x g for 5 min and aspirate media. Add media necessary to reach 1,000 organoids/mL, and pipette thoroughly to create a homogenous mixture.
    1. To grow organoids in a protein matrix, seed organoids at a concentration of 1 organoid/μL in collagen type 1 diluted to 87% or in basement membrane extracted from Engelbreth-Holm-Swarm mouse sarcoma. While working with samples, keep on ice.
    2. To freeze organoids, transfer the desired volume to a separate centrifuge tube. Spin down at 450 x g for 5 min. Aspirate media, and then add the same volume of 90% FBS/10% DMSO. Resuspend the organoids, and then aliquot into cryotubes. Transfer to -80 ˚C, and then to liquid nitrogen within one week.
    3. To thaw, warm in a 37 ˚C water bath for one min. Centrifuge at 450 x g for 5 min, and then aspirate freezing media. Rinse with sterile DPBS, and then centrifuge again. Aspirate DPBS and add organoid media.
  4. Pipette 50 µL (50 organoids) into each well of the low adhesion plate (Figure 1I).
  5. Add 150 µL of organoid media to bring the total working volume to 200 µL. Organoid media consists of 1% penicillin-streptomycin and 1% insulin-transferrin-selenium (ITS) in DMEM/F12 media.
  6. Every 2 days replace media carefully.
    NOTE: Low adhesion plates are not tissue culture treated; therefore, the cells can be easily detached. Aspirate media slowly by tilting the plate and inserting the pipette tip at the edge of each well. Leave a small amount of media in the bottom of the well. Add new media slowly to avoid applying unnecessary shear forces to organoids.

3. Co-culturing with macrophages

  1. Maintain GFP or dTomato-labelled RAW 264.7 macrophages in DMEM media supplemented with 10% FBS and 1% penicillin-streptomycin. Seed 1 x 104, 5 x 104, or 1 x 105 cells/mL into organoid media.
  2. Use live cell phase contrast and fluorescent imaging to monitor macrophage infiltration over time.

4. Immunofluorescence staining of organoids

NOTE: Organoids can be stained in low adhesion wells or can be transferred to chamber slides. To transfer, gently pipette up and down until organoids have detached from plates. Transfer to chamber slides and incubate for 4-8 h to allow organoids to adhere to the plate surface.

  1. Remove organoid medium from the wells by carefully aspirating. Fix samples with 10% neutral buffered formalin for 15 min at RT.
  2. Wash 3x 5 min in 1x PBS. If desired, fixed samples can be stored at 4 °C for one week for further staining.
  3. Permeabilize with 0.1% 4-(1,1,3,3-Tetramethylbutyl) phenyl-polyethylene glycol for 5 min.
    NOTE: To stain for F-actin, incubate samples with phalloidin diluted 1:1,000 and 1.67 nM bisbenzimide nuclear dye in 1% PBS/BSA for 1 h at RT. Then, proceed to step 4.8.
  4. Bermeabilize with 0.5PBS. Samples can be stored at 4opy images and immunofluorescent images. mechanisms that contribute to CTC rlock with 5% normal goat serum in 0.1% PBS/Polyethylene glycol sorbitan monolaurate (PBST) for 1 h at RT. Wash 3x 5 min with PBS.
  5. Incubate with Anti-Cytokeratin 14 diluted 1:1,000, E-Cadherin diluted 1:200, or Tight Junction Protein One diluted 1:100 in 1% NGS in PBST for 1 h at RT. Wash 3x 5 min in PBST.
  6. Incubate with Goat Anti-Rabbit secondary diluted 1:200 with 1% NGS/PBST for 1 h at RT. Cover with foil to avoid light exposure.
  7. Wash 3x 5 min in PBS. Use the nuclear dye (see Table of Materials) to stain nuclei.
  8. Wash 3x 5 min in PBS. If using chamber slide, mount with a coverslip. Store wrapped in foil at 4 °C for up to 2 weeks.

Wyniki

Irradiated epithelial mammary organoids were successfully obtained from mouse mammary glands, processed, and cultured on low-adhesion plates (Figure 1). Organoid yield was tested by seeding in different growth environments (Figure 2A-G). Seeding cells directly onto tissue culture treated 10 cm cell plates yielded an overgrowth of fibroblast cells. Fibroblasts were identified under phase contrast microscopy in or near the same plane of focus as organoids, and they quickly gre...

Dyskusje

In this protocol, we have developed a method for reproducible growth and characterization of irradiated mammary organoids (Figure 1). An irradiation dose of 20 Gy was applied to mirror previous in vivo models of tumor cell recruitment5. Irradiation of mammary glands ex vivo prior to organoid formation allowed for isolation of radiation damage effects without a corresponding infiltration of immune cells. The development of an in vitro irradiated normal tissue model ena...

Ujawnienia

The authors have nothing to disclose.

Podziękowania

We thank Dr. Laura L. Bronsart for providing GFP and dTomato-labeled RAW 264.7 macrophages. This research was financially supported by NIH grant #R00CA201304.

Materiały

NameCompanyCatalog NumberComments
10% Neutral Buffered FormalinVWR16004-128
Anti-cytokeratin 14abcamab181595Lot: GR3200524-3
Bovine Serum AlbuminSigmaA1933-25G
Collagen Type ICorning354236
Collagenase from Clostridium Histolyticum, Type VIIISigmaC2139
Collagenase IGibco17018029
DMEM/F12Thermofisher11320-033
DNAseRoche10104159001
DPBSFisher14190250
E-CadherinCell Signaling24E10Lot: 13
FBSSigmaF0926
GentamicinGibco15750
Goat anti-rabbit secondaryabcamab150077green
Lot: GR3203000-1
Goat anti-rabbit secondaryabcamab150080red
Lot: GR3192711-1
Hoechst 33342Fisher62249Lot: TG2611041
Insulin (10 mg/mL)SigmaI9278
Insulin-Transferrin-Selenium, 100xGibco51500-056
Matrigel Basement Membrane (basement membrane extracted from Engelbreth-Holm-Swarm mouse sarcoma)Corning356237
Normal Goat SerumVector LaboratoriesS-1000
Nuclon Sphera 96 well platesThermo174927
PBSVWR10128-856
Pen/strepFisher15140122
Phalloidinabcamab176757Lot: GR3214582-16
Tight Junction Protein 1NovusNBP1-85047Lot: C115428
Triton X-100 (4-(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol)SigmaX100-100ML
TrypsinGibco27250-018
Tween-20 (Polyethylene glycol sorbitan monolaurate)SigmaP1379-100ML

Odniesienia

  1. Lautner, M., et al. Disparities in the Use of Breast-Conserving Therapy Among Patients With Early-Stage Breast Cancer. Journal of the American Medical Association Surgery. 150 (8), 778-786 (2015).
  2. Lowery, A., Kell, M., Glynn, R., Kerin, M., Sweeney, K. Locoregional recurrence after breast cancer surgery a systematic review by receptor phenotype. Breast Cancer Research and Treatment. 133, 831-841 (2012).
  3. Kim, M. Y., et al. Tumor Self-Seeding by Circulating Cancer Cells. Cell. 139 (7), 1315-1326 (2009).
  4. Vilalta, M., Rafat, M., Giaccia, A. J., Graves, E. E. Recruitment of Circulating Breast Cancer Cells Is Stimulated by Radiotherapy. Cell Reports. 8 (2), 402-409 (2014).
  5. Rafat, M., et al. Macrophages Promote Circulating Tumor Cell-Mediated Local Recurrence following Radiotherapy in Immunosuppressed Patients. Cancer Research. 78 (15), 4241-4252 (2018).
  6. Shamir, E. R., Ewald, A. J. Three-dimensional organotypic culture: Experimental models of mammalian biology and disease. Nature Reviews Molecular Cell Biology. 15 (10), 647-664 (2014).
  7. Simian, M., Hirai, Y., Navre, M., Werb, Z., Lochter, A., Bissell, M. J. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development. 128, 3117-3131 (2001).
  8. Shamir, E. R., et al. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. Journal of Cell Biology. 204 (5), 839-856 (2014).
  9. Ewald, A. J., Brenot, A., Duong, M., Chan, B. S., Werb, Z. Collective Epithelial Migration and Cell Rearrangements Drive Mammary Branching Morphogenesis. Developmental Cell. 14, 570-581 (2008).
  10. Nguyen-Ngoc, K. -. V., et al. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proceedings of the National Academy of Sciences. 89 (19), E2595-E2604 (2012).
  11. Nguyen-Ngoc, K. -. V., Shamir, E. R., Huebner, R. J., Beck, J. N., Cheung, K. J., Ewald, A. J. 3D Culture Assays of Murine Mammary Branching Morphogenesis and Epithelial Invasion. Tissue Morphogenesis: Methods and Protocols. 1189, 135-162 (2015).
  12. Ewald, A. J. Isolation of mouse mammary organoids for long-term time-lapse imaging. Cold Spring Harbor Protocols. 8 (2), 130-133 (2013).
  13. Drost, J., Clevers, H. Organoids in cancer research. Nature Reviews. , (2018).
  14. DeNardo, D. G., et al. CD4+T Cells Regulate Pulmonary Metastasis of Mammary Carcinomas by Enhancing Protumor Properties of Macrophages. Cancer Cell. 16 (2), 91-102 (2009).
  15. Plaks, V., et al. Adaptive Immune Regulation of Mammary Postnatal Organogenesis. Developmental Cell. 34 (5), 493-504 (2015).
  16. Mandl, I., McLennan, J. D., Howes, E. L. Isolation and Characterization of Proteinase and Collagenase Fromcl. Histolyticum. The Journal of Clinical Investigation. 32, 1323-1329 (1953).
  17. Mandl, I., Zaffuto, S. F. Serological Evidence for a Specific Clostridium histolyticum Geltinase. The Journal of General Microbiology. 18, 13-15 (1958).
  18. Bond, M. D., Van Wart, H. E. Characterization of the Individual Collagenases from Clostridium histolyticum. Biochemistry. 23 (13), 3085-3091 (1984).
  19. Zhang, L., et al. Establishing estrogen-responsive mouse mammary organoids from single Lgr5+cells. Cellular Signalling. 29, 41-51 (2016).
  20. Sokol, E. S., Miller, D. H., Breggia, A., Spencer, K. C., Arendt, L. M., Gupta, P. B. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Research. 18 (1), 1-13 (2016).
  21. Richert, M. M., et al. An atlas of mouse mammary gland development. Journal of Mammary Gland Biology and Neoplasia. 5 (2), 227-241 (2000).
  22. Maier, P., Hartmann, L., Wenz, F., Herskind, C. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. International Journal of Molecular Sciences. 17 (1), (2016).
  23. LaBarge, M. A., Garbe, J. C., Stampfer, M. R. Processing of Human Reduction Mammoplasty and Mastectomy Tissues for Cell Culture. Journal of Visualized Experiments. (71), (2013).
  24. Campbell, J. J., Botos, L. A., Sargeant, T. J., Davidenko, N., Cameron, R. E., Watson, C. J. A 3-D in vitro co-culture model of mammary gland involution. Integrative Biology (United Kingdom). 6, 618-626 (2014).
  25. Chanson, L., et al. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells. Proceedings of the National Academy of Sciences. 14 (7), 2293-2306 (2011).
  26. Chua, A. C. L., Hodson, L. J., Moldenhauer, L. M., Robertson, S. A., Ingman, W. V. Dual roles for macrophages in ovarian cycle-associated development and remodelling of the mammary gland epithelium. Development. 137, 4229-4238 (2010).
  27. Gregoire, F. M., Smas, C. M., Sul, H. S. Understanding Adipocyte Differentiation. Physiological Reviews. 78 (3), 783-809 (1998).
  28. Scott, M. A., Nguyen, V. T., Levi, B., James, A. W. Current Methods of Adipogenic Differentiation of Mesenchymal Stem Cells. Stem Cells and Development. 20 (10), 1793-1804 (2011).
  29. Gabryś, D., Greco, O., Patel, G., Prise, K. M., Tozer, G. M., Kanthou, C. Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability. International Journal of Radiation Oncology, Biology, Physics. 69 (5), 1553-1562 (2007).
  30. Ewald, A. J. Practical considerations for long-term time-lapse imaging of epithelial morphogenesis in three-dimensional organotypic cultures. Cold Spring Harbor Protocols. 8, 100-117 (2013).
  31. Zhang, M., et al. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. Journal of Ovarian Research. 7 (1), 1-16 (2014).
  32. Ma, J., Liu, L., Che, G., Yu, N., Dai, F., You, Z. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BioMed Central Cancer. 10, 112 (2010).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Irradiated OrganoidsMammary GlandsIonizing RadiationTumor Cell RecruitmentCancer RecurrenceTriple negative Breast CancerConfocal MicroscopyCollagenase SolutionEpithelial CellsStromal CellsBSA SolutionTissue DigestionImmune Cell BehaviorExperimental Protocol

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone