Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
We present a protocol to study the distribution of mitochondria and endoplasmic reticulum in whole cells after genetic modification using correlative light and volume electron microscopy including ascorbate peroxidase 2 and horseradish peroxidase staining, serial sectioning of cells with and without the target gene in the same section, and serial imaging via electron microscopy.
Cellular organelles, such as mitochondria and endoplasmic reticulum (ER), create a network to perform a variety of functions. These highly curved structures are folded into various shapes to form a dynamic network depending on the cellular conditions. Visualization of this network between mitochondria and ER has been attempted using super-resolution fluorescence imaging and light microscopy; however, the limited resolution is insufficient to observe the membranes between the mitochondria and ER in detail. Transmission electron microscopy provides good membrane contrast and nanometer-scale resolution for the observation of cellular organelles; however, it is exceptionally time-consuming when assessing the three-dimensional (3D) structure of highly curved organelles. Therefore, we observed the morphology of mitochondria and ER via correlative light-electron microscopy (CLEM) and volume electron microscopy techniques using enhanced ascorbate peroxidase 2 and horseradish peroxidase staining. An en bloc staining method, ultrathin serial sectioning (array tomography), and volume electron microscopy were applied to observe the 3D structure. In this protocol, we suggest a combination of CLEM and 3D electron microscopy to perform detailed structural studies of mitochondria and ER.
Mitochondria and endoplasmic reticulum (ER) are membrane-bound cellular organelles. Their connection is necessary for their function, and proteins related to their network have been described1. The distance between the mitochondria and ER has been reported as approximately 100 nm using light microscopy2; however, recent super-resolution microscopy3 and electron microscopy (EM)4 studies have revealed it to be considerably smaller, at approximately 10-25 nm. The resolution achieved in super-resolution microscopy is lower than EM, and specific labeling is necessary. EM is a suitable technique to attain a sufficiently high-resolution contrast for structural studies of the connections between mitochondria and ER. However, a disadvantage is the limited z-axis information because the thin sections must be approximately 60 nm or thinner for conventional transmission electron microscopy (TEM). For sufficient EM z-axis imaging, three-dimensional electron microscopy (3DEM) can be used5. However, this involves the preparation of hundreds of thin serial sections of whole cells, which is very tricky work that only a few skilled technologists have mastered. These thin sections are collected on fragile formvar film-coated one-hole TEM grids. If the film breaks on one gird, serial imaging and volume reconstruction is not possible. Serial block-face scanning electron microscopy (SBEM) is a popular technique for 3DEM that uses destructive en bloc sectioning inside the scanning electron microscope (SEM) vacuum chamber with either a diamond knife (Dik-SBEM) or a focused ion beam (FIB-SEM)6. However, because those techniques are not available at all facilities, we suggest array tomography7 using serial sectioning and SEM. In array tomography, serial sections cut using an ultramicrotome are transferred to a glass coverslip instead of a TEM grid and visualized via light microscopy and SEM8. To enhance the signal for backscatter electron (BSE) imaging, we utilized an en bloc EM staining protocol employing osmium tetroxide (OsO4)-fixed cells with osmiophilic thiocarbohydrazide (TCH)9, enabling us to obtain images without post-embedding double staining.
Additionally, the mitochondrial marker SCO1 (cytochrome c oxidase assembly protein 1)– ascorbate peroxidase 2 (APEX2)10 molecular tag was used to visualize mitochondria at the EM level. APEX2 is approximately 28 kDa and is derived from soybean ascorbate peroxidase11. It was developed to show the detailed location of specific proteins at the EM level in the same way that green fluorescent protein-tagged protein is used in light microscopy. APEX2 converts 3,3' -diaminobenzidine (DAB) into an insoluble osmiophilic polymer at the site of the tag in the presence of the cofactor hydrogen peroxide (H2O2). APEX2 can be used as an alternative to traditional antibody labeling in EM, with a protein localization throughout the depth of the entire cell. In other words, the APEX2-tagged protein can be visualized by specific osmication11 without immunogold labeling and permeabilization after ultra-cryosectioning. Horseradish peroxidase (HRP) is also a sensitive tag that catalyzes the H2O2-dependent polymerization of DAB into a localized precipitate, providing EM contrast after treatment with OsO4. The ER target peptide sequence HRP-KDEL (lys-asp-glu-leu)12 was applied to visualize ER within a whole cell. To evaluate our protocol of utilizing genetic tags and en bloc staining with reduced osmium and TCH (rOTO method), using the osmication effect at the same time, we compared the membrane contrast with and without the use of each genetic tag in rOTO en bloc staining. Although 3DEM with array tomography and DAB staining with APEX and HRP have, respectively, been utilized for other purposes, our protocol is unique because we have combined array tomography for 3DEM and DAB staining for mitochondria and ER labeling. Specifically, we showed five cells with and without APEX-tagged genes in the same section, which aided in investigating the effect of the genetic modification on cells.
1. Cell culture with patterned grid culture dish and cell transfection with SCO1-APEX2 and HRP-KDEL plasmid vector
2. Light microscopy of cells growing on patterned culture dishes and DAB staining for APEX2 and HRP
3. Sample preparation for the EM block
4. Serial sectioning and mounting on indium-tin-oxide coated coverslips for SEM imaging
5. Imaging in the SEM and alignment of the SEM image stack
6. Segmentation of mitochondria and ER from serial images
Figure 1 describes the schedule and workflow for this protocol. The protocol requires 7 days; however, depending on the time spent on SEM imaging, this may increase. For cell transfection, the confluency of the cells should be controlled so as not to cover the bottom of the entire grid plate (Figure 1A). A high cell density could prevent the identification of the cell of interest during light microscope and EM observation. We used genetically tagged plasmids that expressed APEX2 and HRP ...
Determining the cellular localization of specific proteins at a nanometer resolution using EM is crucial to understand the cellular functions of proteins. Generally, there are two techniques to study the localization of a target protein via EM. One is the immunogold technique, which has been used in EM since 1960, and the other is a technique using recently developed genetically encoded tags16. Traditional immunogold techniques have employed antibody-conjugated gold particles or quantum dots to sh...
The authors have nothing to disclose.
This research was supported by KBRI basic research program through Korea Brain Research Institute funded by Ministry of Science and ICT (19-BR-01-08), and National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)(No. 2019R1A2C1010634). SCO1-APEX2 and HRP-KDEL plasmids were kindly provided by Hyun-Woo Rhee (Seoul National University). TEM data were acquired at Brain Research Core Facilities in KBRI.
Name | Company | Catalog Number | Comments |
Glutaraldehyde | EMS | 16200 | Use only in fume hood |
Paraformaldehyde | EMS | 19210 | Use only in fume hood |
Sodium cacodylate | EMS | 12300 | |
Osmium tetroxide 4 % aqueous solution | EMS | 16320 | Use only in fume hood |
Epon 812 | EMS | 14120 | EMbed 812- 20 ml/ DDSA- 16 ml/ NMA- 8 ml/ DMP-30 - 0.8 ml |
Ultra-microtome Leica ARTOS 3D | Leica | ARTOS 3D | |
Uranyl acetate | EMS | 22400 | Hazardous chemical |
Lead citrate | EMS | 17900 | |
35mm Gridded coverslip dish | Mattek | P35G-1.5-14-CGRD | |
Glow discharger | Pelco | easiGlow | |
Formvar carbon coated Copper Grid | Ted Pella | 01805-F | |
Hydrochloric acid | SIGMA | 258148 | |
Fugene HD | Promega | E2311 | |
Glycine | SIGMA | G8898 | |
3,3′ -diaminobenzamidine (DAB) | SIGMA | D8001 | Hazardous chemical |
30% Hydrogen peroxide solution | Merck | 107210 | |
Potassium hexacyanoferrate(II) trihydrate | SIGMA | P3289 | |
0.22 um syringe filter | Sartorius | 16534 | |
Thiocarbonyldihydrazide | SIGMA | 223220 | Use only in fume hood |
Potassium hydroxide | Fluka | 10193426 | |
L-aspartic acid | SIGMA | A9256 | |
Ethanol | Merck | 100983 | |
Transmission electron microscopy | FEI | Tecnai G2 | |
Indium tin oxide (ITO) coated glass coverslips | SPI | 06489-AB | fragil glass |
Isopropanol | Fisher Bioreagents | BP2618-1 | |
Diamond knife | Leica | AT-4 | |
Inveted light microscopy | Nikon | ECLipse TS100 | |
Scanning electron microscopy | Zeiss | Auriga |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone