Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
We demonstrate algal toxicity testing for difficult substances (e.g., colored substances or nanomaterials) using a setup illuminated vertically with an LED.
Ecotoxicity data is a requirement for pre- and post-market registration of chemicals by European and international regulations (e.g., REACH). The algal toxicity test is frequently used in regulatory risk assessment of chemicals. In order to achieve high reliability and reproducibility the development of standardized guidelines is vital. For algal toxicity testing, the guidelines require stable and uniform conditions of parameters such as pH, temperature, carbon dioxide levels and light intensity. Nanomaterials and other so-called difficult substances can interfere with light causing a large variation in results obtained hampering their regulatory acceptance. To address these challenges, we have developed LEVITATT (LED Vertical Illumination Table for Algal Toxicity Tests). The setup utilizes LED illumination from below allowing for a homogenous light distribution and temperature control while also minimizing intra-sample shading. The setup optimizes the sample volume for biomass quantification and does at the same time ensure a sufficient influx of CO2 to support exponential growth of the algae. Additionally, the material of the test containers can be tailored to minimize adsorption and volatilization. When testing colored substances or particle suspensions, the use of LED lights also allows for increasing the light intensity without additional heat generation. The compact design and minimal equipment requirements increase the possibilities for implementation of the LEVITATT in a wide range of laboratories. While compliant with standardized ISO and OECD guidelines for algal toxicity testing, LEVITATT also showed a lower inter-sample variability for two reference substances (3,5-Dicholorophenol and K2Cr2O7) and three nanomaterials (ZnO, CeO2, and BaSO4) compared to Erlenmeyer flasks and microtiter plates.
The algal toxicity test is one of only three mandatory tests used to generate the ecotoxicity data required for pre- and post-market registration of chemicals by European and international regulations (e.g., REACH1 and TSCA (USA)). For this purpose, standardized algal test guidelines have been developed by international organizations (e.g., ISO and OECD). These testing standards and guidelines prescribe ideal test conditions in terms of pH, temperature, carbon dioxide levels and light intensity. However, maintaining stable test conditions during algal testing is in practice difficult and the results suffer from problems with reproducibility and reliability for a range of chemical substances and nanomaterials (often referred to as “difficult substances”)2. Most of the existing algal toxicity testing setups operate with relatively large volumes (100–250 mL) situated on an orbital shaker inside an incubator. Such a setup limits the number of test concentrations and replicates achievable and high volumes of algal culture and test material. Additionally, these setups rarely have a uniform light field and reliable lighting conditions are furthermore difficult to obtain in large flasks, partly as light intensity decreases exponentially the further the light travels and partly due to the flask geometry. Alternative setups comprise plastic microtiter3 plates containing small sample volumes that do not allow for adequate sampling volumes to measure pH, additional biomass measurements, pigment extraction or other analyses requiring destructive sampling. One particular challenge using existing setups for algal toxicity testing of nanomaterials and substances forming colored suspensions is the interference or blocking of the light available to the algal cells, often referred to as “shading”4,5. Shading may occur within vials by the test material and/or interactions between the test material and the algal cells, or shading can occur between vials, due to their positioning relative to each other and the light source.
The method is based on the small-scale algal toxicity test setup introduced by Arensberg et al.6 that allows for testing in compliance with standards such as OECD 2017, and ISO 86928. The method is further optimized to address the limitations stated above by: 1) utilizing the LED light technology to ensure uniform light conditions with minimal heat generation, 2) providing adequate sample volume for chemical/biological analysis while maintaining constant pH, CO2 levels, and 3) enabling the use of versatile test container material for testing of volatile substances or substances with a high sorption potential.
1. Description of the LEVITATT setup
Figure 1: Picture of LED Vertical Illumination Table for Algal Toxicity Tests (LEVITATT). 1) 20 mL glass scintillation vials for incubation, 2) 4 mL sample for analysis, 3) lid with drilled hole for CO2 exchange, 4) casing for defined light conditions, 5) LED light source located in the center of the casing, 6) orbital shaker for agitation during the experiment, and 7) a thermostatic cabinet. Please click here to view a larger version of this figure.
2. Preparation of algal growth medium
Stock solutions | Nutrient | Concentration in stock solution | Concentration in test solution |
1: Macronutrients | NH4Cl | 1.5 g/L | 15 mg/L (N: 3.9 mg/L) |
MgCl2∙6H2O | 1.2 g/L | 12 mg/L (Mg: 2.9 mg/L) | |
CaCl2∙2H2O | 1.8 g/L | 18 mg/L (Ca: 4.9 mg/L) | |
MgSO4∙7H2O | 1.5 g/L | 15 mg/L (S: 1.95 mg/L) | |
KH2PO4 | 0.16 g/L | 1.6 mg/L (P: 0,36 mg/L) | |
2: Fe-EDTA | FeCl3∙6H2O | 64 mg/L | 64 µg/L (Fe: 13 µg/L) |
Na2EDTA∙2H2O | 100 mg/L | 100 µg/L | |
3: Trace elements | H3BO3a | 185 mg/L | 185 µg/L (B: 32 µg/L) |
MnCl2∙4H2O | 415 mg/L | 415 µg/L (Mn: 115 µg/L) | |
ZnCl2 | 3 mg/L | 3 µg/L (Zn: 1.4 µg/L) | |
CoCl2∙6H2O | 1.5 mg/L | 1.5 µg/L (Co: 0.37 µg/L) | |
CuCl2∙2H2O | 0.01 mg/L | 0.01 µg/L (Cu: 3.7 ng/L) | |
Na2MoO4∙2H2O | 7 mg/L | 7 µg/L (Mo: 2.8 µg/L) | |
4: NaHCO3 | NaHCO3 | 50 g/L | 50 mg/L (C: 7.14 mg/L) |
Table 1: Concentrations of nutrients in stock solutions for algal growth medium
NOTE: H3BO3 can be dissolved by adding 0.1 M NaOH. EDTA should be removed when testing metals, to avoid complexation with metal ions. Sterilize the stock solutions by membrane filtration (mean pore diameter 0.2 µm) or by autoclaving (120 °C, 15 min). Do no autoclave stock solutions 2 and 4, but sterilize them by membrane filtration. Store the solutions in the dark at 4 °C.
3. Setting up the algal test
NOTE: A flow diagram of the algal test procedure is shown in Figure 2.
Figure 2: Flow diagram of the algal test setup. Please click here to view a larger version of this figure.
4. Analyzing algal test samples
An initial test with a reference substance is carried out to determine the sensitivity of the algal strain. Reference substances regularly used for R. subcapitata are potassium dichromate and 3,5-Dichlorphenol7,8. Figure 3 and Table 2 show a representative result of an algal test including curve fitting and statistical outputs when the DRC package in R is applied to the growth rates.
Phytoplankton converts solar energy and carbon dioxide to organic matter and thus holds a pivotal role in the aquatic ecosystem. For this reason, algal growth rate inhibition tests are included as one of three mandatory aquatic toxicity tests required for regulatory risk assessment of chemicals. The ability to perform a reliable and reproducible algal toxicity test is key in this regard. Test setups using Erlenmeyer flasks introduces a range of variabilities and inconveniences as described in the introduction. To circumv...
The authors have nothing to disclose.
This research was funded by PATROLS – Advanced Tools for NanoSafety Testing, Grant agreement 760813 under Horizon 2020 research and innovation program.
Name | Company | Catalog Number | Comments |
Acetone | Sigma-Aldrich | V179124 | |
Ammonium chloride | Sigma-Aldrich | 254134 | |
BlueCap bottles (1L) | Buch & Holm A/S | 9072335 | |
Boric acid | Sigma-Aldrich | B0394 | |
Calcium chloride dihydrate | Sigma-Aldrich | 208290 | |
Clear acrylic sheet (40x40 cm) | |||
Cobalt(II) chloride hexahydrate | Sigma-Aldrich | 255599 | |
Copper(II) chloride dihydrate | Sigma-Aldrich | 307483 | |
Ethylenediaminetetraacetic acid disodium salt dihydrate | Sigma-Aldrich | E5134 | |
Fluorescence Spectrophotometer F-7000 | Hitachi | ||
Hydrochloric acid | Sigma-Aldrich | 258148 | |
Iron(III) chloride hexahydrate | Sigma-Aldrich | 236489 | |
LED light source | Helmholt Elektronik A/S | H35161 | Neutral White, 6500K |
Magnesium chloride hexahydrate | Sigma-Aldrich | M9272 | |
Magnesium sulfate heptahydrate | Sigma-Aldrich | 230391 | |
Manganese(II) chloride tetrahydrate | Sigma-Aldrich | 221279 | |
Orbital shaker | IKA | 2980200 | |
Potassium phosphate monobasic | Sigma-Aldrich | P0662 | |
Raphidocelis subcapitata | NORCCA | NIVA-CHL1 strain | |
Scintillation vials (20 mL) | Fisherscientific | 11526325 | |
Sodium bicarbonate | Sigma-Aldrich | S6014 | |
Sodium hydroxide | Sigma-Aldrich | 415413 | |
Sodium molybdate dihydrate | Sigma-Aldrich | 331058 | |
Spring clamp | Frederiksen Scientific A/S | 472002 | |
Thermostatic cabinet | VWR | WTWA208450 | Alternative: temperature controlled room |
Ventilation pipe (Ø125 mm) | Silvan | 22605630165 | |
Volumetric flasks (25 mL) | DWK Life Sciences | 246781455 | |
Zinc chloride | Sigma-Aldrich | 208086 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone