Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
* Wspomniani autorzy wnieśli do projektu równy wkład.
Three-dimensional (3D) cellular systems are relevant models for investigating organogenesis. A hydrogel-based method for biliary cysts production and their characterization is proposed. This protocol unravels the barriers of 3D characterization, with a straightforward and reliable method to assess cyst formation efficiency, sizes, and to test their functionality.
Cholangiocytes, the epithelial cells that line up the bile ducts in the liver, oversee bile formation and modification. In the last twenty years, in the context of liver diseases, 3-dimensional (3D) models based on cholangiocytes have emerged such as cysts, spheroids, or tube-like structures to mimic tissue topology for organogenesis, disease modeling, and drug screening studies. These structures have been mainly obtained by embedding cholangiocytes in a hydrogel. The main purpose was to study self-organization by addressing epithelial polarity, functional, and morphological properties. However, very few studies focus on cyst formation efficiency. When this is the case, the efficiency is often quantified from images of a single plane. Functional assays and structural analysis are performed without representing the potential heterogeneity of cyst distribution arising from hydrogel polymerization heterogeneities and side effects. Therefore, the quantitative analysis, when done, cannot be used for comparison from one article to another. Moreover, this methodology does not allow comparisons of 3D growth potential of different matrices and cell types. Additionally, there is no mention of the experimental troubleshooting for immunostaining cysts. In this article, we provide a reliable and universal method to show that the initial cell distribution is related to the heterogeneous vertical distribution of cyst formation. Cholangiocyte cells embedded in hydrogel are followed with Z-stacks analysis along the hydrogel depth over the time course of 10 days. With this method, a robust kinetics of cyst formation efficiency and growth is obtained. We also present methods to evaluate cyst polarity and secretory function. Finally, additional tips for optimizing immunostaining protocols are provided in order to limit cyst collapse for imaging. This approach can be applied to other 3D cell culture studies, thus opening the possibilities to compare one system to another.
In the last three decades, the field of in vitro research has advanced towards 3D culture systems. A number of protocols have emerged for culturing cells in 3D as spheroids or aggregates in the presence or absence of a scaffold/matrix, in a drop, in agitation, in microfluidic devices, or floating1. The use of 3D culture methods has proved its advantages over 2-dimensional (2D) cultures, particularly for epithelial cells, which were shown to self-organize in 3D structures, called cysts or acini. In this case, the cells form a monolayer encircling a lumen, where cells acquire their full epithelial phenotype with improved physiological specific functions2.
Numerous studies have contributed to the development of methods for forming these epithelial organoids in natural matrices. This has allowed to recapitulate in vivo cell-cell and cell-microenvironment interactions, to get the establishment and the stability of the epithelial phenotype3,4,5,6,7. Recently, and in particular with the aim of developing transplantable organoids and deciphering the requirement of the microenvironment for orchestrating the epithelial program, synthetic hydrogels have been developed to enhance the formation of epithelial acini8,9,10. Unfortunately, these studies report on qualitative data, or present calculation methods using internal references such as the ratio of cysts over non-cysts in a 2D plane8,9,10. This precludes any comparison between different studies in terms of efficiency, stability, or morphological and physiological characterization of the epithelial organoids.
Microencapsulation of epithelial cells in beads using microfluidic devices has allowed for more realistic quantitative and comparative results. Using this technology, organoids from various cell types were formed and differentiated based on the morphology among different 3D cellular structures11,12. However, this technology is not easy to work with and requires the use of clean rooms to produce the microfluidic devices. This technology has been established for a few types of hydrogels but requires technical adaptation to be applied to other hydrogels, restricting its versatility. Therefore, most studies intended to develop epithelial organoids rely on the embedding of epithelial cells in a hydrogel bulk. In these methods, the high heterogeneity of gel structuration and cell distribution inside the whole 3D culture is often neglected. Therefore, most of the analyses relate to single 2D images, which represent only very roughly the distribution of the various cellular objects in the whole 3D volume.
Diseases that affect bile ducts, such as cholangiocarcinoma, biliary atresia, primary sclerosing cholangitis, among others, are a major cause of mortality and morbidity. Except for liver transplantation, there are no effective treatments for these conditions13. Efforts to investigate bile duct formation, disease causes, and progression will allow the development of novel therapies14.
Biliary organotypic models of cysts, spheroids or tube-like structures using normal or patient-derived, differentiated, or progenitor-derived cholangiocyte cell lines have been developed15,16,17,18,19,20. Various studies have recapitulated cholangiocyte polarity, expression of cholangiocyte markers, presence of cilia, cholangiocyte secretory and reabsorptive ability, and lumen formation and obstruction; all of which represent important characteristics of cholangiocyte phenotype, morphology, and function15,17,19. Others have reported maintenance of patient-derived biliary organoids for long periods of time20. Recently, we investigated the role of biochemical and biophysical cues on biliary cysts organogenesis21. Importantly, the pathogenesis of biliary atresia was studied in biliary spheroids and tubes7,22. Furthermore, key features of primary sclerosing cholangitis such as cholangiocyte senescence, secretion of pro-inflammatory cytokines, as well as macrophage recruitment were successfully studied using biliary spheroids15,20. However, reproducible in vitro 3D quantitative models that physiologically modulate cholangiocyte phenotype, physiology, and microenvironment where these questions can be addressed are still needed. Moreover, only few publications have reported cyst formation efficiency21,23. This is an important point to establish, particularly when investigating organogenesis, disease cause, and correlation of drug responses with cholangiocyte function and polarization. In addition, with differences in scaffold/matrix used from protocol to protocol, it is difficult to compare between systems. To solve these issues, we propose a quantitative, reliable, and universal method to generate biliary cysts mimicking lumen formation, cholangiocyte polarization, and cholangiocyte secretory function. Importantly, we present a systematic analysis performed along the Z-axis across the 3D gel when evaluating over time, cyst formation efficiency, size, viability, polarization, and functionality. Furthermore, we used a natural hydrogel and normal rat cholangiocytes (NRC)s, as an example for the protocol, but other natural or synthetic hydrogels, as well as epithelial cells could be used for the formation of 3D cystic structures.
Access restricted. Please log in or start a trial to view this content.
1. Generation of cysts
NOTE: This protocol can be performed with any type of hydrogel, if the gelation allows embedding of cells.
2. Cyst quantification
3. Cell viability
4. Secretion activity
NOTE: The secretion activity through the apical membrane of the cholangiocytes is assessed by the secretion of fluorescein in the lumen. Its specificity can be evaluated by doing the same test with Verapamil, a multi-drug resistant (MDR) transporter inhibitor24.
5. Epithelial polarity assessment by immunofluorescence
Access restricted. Please log in or start a trial to view this content.
Formation and characterization of cysts
3D cell culture systems are an important tool to study organogenesis and disease modeling25. Unfortunately, most of these methods are qualitative or use internal quantification performed on a single plane by comparing the number of cysts versus non-cysts, in variable and often unspecified volumes, preventing any comparison in terms of cyst formation efficiency between the various studies7,
Access restricted. Please log in or start a trial to view this content.
In order to study organogenesis and maintenance of 3D cellular structures, various tissues have been modelled, using different cellular origins but also different types of extra-cellular matrices including synthetic hydrogels8,9,10,21. However, due to lack of 3D quantitative analysis that allows for comparisons between methods in terms of organoids formation or functionality7<...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
We thank Dr. Nicholas LaRusso (Mayo Clinic, Rochester, Minnesota, United States), who kindly provided the NRC cell line.
This work received the financial support of both the iLite RHU program (grant ANR-16-RHUS-0005) and the DHU Hepatinov.
We thank Isabelle Garcin and Réseau d’Imagerie Cellulaire Paris Saclay for their support on imaging.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
10 µl- Pipette Eppendorf Research Plus | Thermo Fisher Scientific | 3120000020 | |
100 µl - Pipette Eppendorf Research Plus | Thermo Fisher Scientific | 3120000046 | |
1000 µl - Pipette Eppendorf Research Plus | Thermo Fisher Scientific | 3120000062 | |
1X PBS | Thermo Fisher Scientific | 14190-094 | |
200 µl - Pipette Eppendorf Research Plus | Thermo Fisher Scientific | 3120000054 | |
3,3′,5-Triiodo-L-thyronine sodium salt | Sigma-Aldrich | T5516 | NRC complete medium final concentration = 3.4 µg/mL |
Acetic acid | VWR | 20104-298 | 0.02N final |
Aerosol barrier pipettes tips 10 µl (Fisherbrand) | Thermo Fisher Scientific | 2707439 | |
Aerosol barrier pipettes tips 1000 µl (Fisherbrand) | Thermo Fisher Scientific | 2707404 | |
Aerosol barrier pipettes tips 200 µl (Fisherbrand) | Thermo Fisher Scientific | 2707430 | |
Antibiotic Antimicotic Solution (100X) | Sigma-Aldrich | A5955 | NRC complete medium final concentration = 1:100 dilution |
Bovine pituitary extract | Thermo Fisher Scientific | 13028-014 | NRC complete medium final concentration = 30 µg/mL |
Bovine serum albumin | Sigma-Aldrich | A2153 | 1:1000 dilution |
Chemically Defined Lipid Concentrate (100X) | Thermo Fisher Scientific | 11905-031 | NRC complete medium final concentration = 1:100 dilution |
Collagen high concentration, rat tail | Thermo Fisher Scientific | 354249 | 50 µg/mL final concentration |
Dexamethasone | Sigma-Aldrich | D4902 | NRC complete medium final concentration = 0.393 µg/mL |
DMEM F12 | Thermo Fisher Scientific | 21331-020 | NRC complete medium final concentration = 1X |
E-cadherin Rabbit anti-Human, Rat, Polyclonal | Thermo Fisher Scientific | PA5-32178 | 1:400 dilution |
Eclipse TE300 inverted microscope | Nikon | imaging | |
Ethanolamine | Sigma-Aldrich | E9508 | NRC complete medium final concentration = 0.32 mM |
Fetal calf serum | Thermo Fisher Scientific | 10270-106 | NRC complete medium final concentration = 5:100 dilution |
Fluoroshield with DAPI (Mounting medium) | Sigma-Aldrich | F6057 | |
Formaldehyde 16% (W/V) | Thermo Fisher Scientific | 28906 | 4% (W/V) |
Goat serum | Thermo Fisher Scientific | 16210-064 | 1:10 dilution |
Hamamatsu camera (Digital camera C11440 ORCA - flash 4.OLT) | Hamamatsu | imaging | |
Hoechst 33258 | Sigma-Aldrich | B1155 | 5 µg/mL final concentration |
IgG (H+L) Highly Cross-Adsorbed Goat anti-Rabbit, Alexa Fluor Plus 647 | Thermo Fisher Scientific | A32733 | 1:500 dilution |
ImageJ version 2.0.0-rc-69/1.52n | Open source image processing software | ||
Insulin-Transferrin-Selenium (100X) | Thermo Fisher Scientific | 51300-044 | NRC complete medium final concentration = 1:100 dilution |
L-Glutamine (100X) | Thermo Fisher Scientific | 25030-024 | NRC complete medium final concentration = 1:100 dilution |
Matrigel GFR (stock concentration 9.7 mg/mL) | Thermo Fisher Scientific | 356231 | 4:10 dilution |
NIS Elements software version 4.50.00 | Nikon | image acquisition and display | |
Non-Essential-Amino-Acids-Solution (100X) | Thermo Fisher Scientific | 11140-035 | NRC complete medium final concentration = 1:100 dilution |
Objective Plan Fluor 10X/0.30 Ph1 DL (∞/1.2 WD 15.2) | Nikon | ||
Prolong Gold Antifade Reagent | Thermo Fisher Scientific | P36931 | |
Propidium Iodide (PI) | Sigma-Aldrich | P4170 | 20 µg/mL final concentration |
Rhodamine Phalloidin | Thermo Fisher Scientific | R415 | 16.2 nM final concentration |
Sir-Actin / Verapamil kit | Spirochrome | SC001 | 10 µM final concentration |
Soybean trypsin inhibitor | Thermo Fisher Scientific | 17075-029 | NRC complete medium final concentration = 50 µg/mL |
Sterile cell strainer 40 µm (Fisherbrand) | Thermo Fisher Scientific | 22363547 | |
Sterile pipettes 10 mL (Fisherbrand) | Thermo Fisher Scientific | 1367811E | |
Sterile pipettes 5 mL (Fisherbrand) | Thermo Fisher Scientific | 1367811D | |
Sterile tubes 1.5 mL (Fisherbrand) | Thermo Fisher Scientific | 11926955 | |
Sterile tubes 15 mL (Fisherbrand) | Thermo Fisher Scientific | 7200886 | |
Sterile tubes 50 mL (Fisherbrand) | Thermo Fisher Scientific | 553913 | |
Sucrose | Sigma-Aldrich | S0389 | 5:100 dilution |
Tissue culture treated flask 25cm2 (Falcon) | Thermo Fisher Scientific | 353108 | |
Triton X-100 | Sigma-Aldrich | T8787 | 5:1000 dilution |
Trypsin-EDTA (0.05%) phenol red | Thermo Fisher Scientific | 25300-054 | 1X |
Tween-20 | Sigma-Aldrich | P1379 | 5:10000 dilution |
Vitamin (100X) | Thermo Fisher Scientific | 11120-037 | NRC complete medium final concentration = 1:100 dilution |
μ-Slide 8 Well ibiTreat, Ibidi | Clinisciences | 80826 |
Access restricted. Please log in or start a trial to view this content.
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone