JoVE Logo

Zaloguj się

Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

Integration of diverse synaptic inputs to neurons is best measured in a preparation that preserves all pre-synaptic nuclei for natural timing and circuit plasticity, but brain slices typically sever many connections. We developed a modified brain slice to mimic in vivo circuit activity while maintaining in vitro experimentation capability.

Streszczenie

In vitro slice electrophysiology techniques measure single-cell activity with precise electrical and temporal resolution. Brain slices must be relatively thin to properly visualize and access neurons for patch-clamping or imaging, and in vitro examination of brain circuitry is limited to only what is physically present in the acute slice. To maintain the benefits of in vitro slice experimentation while preserving a larger portion of presynaptic nuclei, we developed a novel slice preparation. This “wedge slice” was designed for patch-clamp electrophysiology recordings to characterize the diverse monaural, sound-driven inputs to medial olivocochlear (MOC) neurons in the brainstem. These neurons receive their primary afferent excitatory and inhibitory inputs from neurons activated by stimuli in the contralateral ear and corresponding cochlear nucleus (CN). An asymmetrical brain slice was designed which is thickest in the rostro-caudal domain at the lateral edge of one hemisphere and then thins towards the lateral edge of the opposite hemisphere. This slice contains, on the thick side, the auditory nerve root conveying information about auditory stimuli to the brain, the intrinsic CN circuitry, and both the disynaptic excitatory and trisynaptic inhibitory afferent pathways that converge on contralateral MOC neurons. Recording is performed from MOC neurons on the thin side of the slice, where they are visualized using DIC optics for typical patch-clamp experiments. Direct stimulation of the auditory nerve is performed as it enters the auditory brainstem, allowing for intrinsic CN circuit activity and synaptic plasticity to occur at synapses upstream of MOC neurons. With this technique, one can mimic in vivo circuit activation as closely as possible within the slice. This wedge slice preparation is applicable to other brain circuits where circuit analyses would benefit from preservation of upstream connectivity and long-range inputs, in combination with the technical advantages of in vitro slice physiology.

Wprowadzenie

Observation of activity of neural circuits is ideally performed with native sensory inputs and feedback, and intact connectivity between brain regions, in vivo. However, performing experiments that give single-cell resolution of neural circuit function is still limited by technical challenges in the intact brain. While in vivo extracellular electrophysiology or multiphoton imaging methods can be used for investigating activity in intact nervous systems, interpreting how different inputs integrate or measuring subthreshold synaptic inputs remains difficult. In vivo whole-cell recordings overcome these limitations but are challenging to perform, even in brain regions which are easily accessed. Technical challenges of single-cell resolution experiments are further amplified in certain neuron populations that are located deep in the brain, or in spatially diffuse populations that require either genetic tools to locate cells in vivo (e.g., genetic expression of channelrhodopsin paired with optrode recording) or post-hoc histochemical identification after recording site labeling (e.g. with neurotransmission-specific markers). Being located diffusely near the ventral surface of the brainstem, medial olivocochlear (MOC) neurons suffer from the above limitations1, making them extremely difficult to access for in vivo experimentation.

Brain slices (~100-500 µm thickness) have long been used to study brain circuitry, including auditory brainstem circuitry, because of the physical segregation of connected neurons that are contained within the same slice2,3,4,5,6,7,8,9. Experiments using much thicker slices (>1 mm) have been employed in other labs to understand how bilateral inputs integrate in areas of the superior olivary complex (SOC) including the medial superior olive10,11. These slices were prepared such that axons of the auditory nerve (AN) remained intact within the slice and were electrically stimulated to initiate synaptic neurotransmitter release in the CN, mimicking activity of first order auditory neurons as they would respond to sound. One major disadvantage of these thick slices is visibility of neurons for patch-clamp electrophysiological recordings (“patching”). Patching becomes increasingly difficult as the numerous axons in this area become myelinated with age12,13,14,15, making the tissue optically dense and obscuring neurons even in a typical, thin brain slice. Our goal is to create in vitro preparations that more closely resemble the circuit connectivity of in vivo recordings, but with the high-throughput and high-resolution recording abilities of visually guided patch-clamp electrophysiology in brain slices.

Our lab investigates the physiology of neurons of the auditory efferent system, including MOC neurons. These cholinergic neurons provide efferent feedback to the cochlea by modulating the activity of outer hair cells (OHCs)16,17,18,19,20. Previous studies have shown that this modulation plays a role in gain control in the cochlea21,22,23,24,25,26 and protection from acoustic trauma27,28,29,30,31,32,33. In mice, MOC neurons are diffusely located in the ventral nucleus of the trapezoid body (VNTB) in the auditory brainstem1. Our group has utilized the ChAT-IRES-Cre mouse line crossed with the tdTomato reporter mouse line to target MOC neurons in brainstem slices under epifluorescent illumination. We showed that MOC neurons receive afferent inhibitory input from the ipsilateral medial nucleus of the trapezoid body (MNTB), which is excited, in turn, by axons from globular bushy cells (GBC) in the contralateral cochlear nucleus (CN)34,35,36,37,38. Additionally, MOC neurons likely receive their excitatory input from T-stellate cells in the contralateral CN39,40,41. Taken together, these studies show MOC neurons receive both excitatory and inhibitory inputs derived from the same (contralateral) ear. However, the presynaptic neurons, and their axons converging on MOC neurons, are not quite close enough to each other to be fully intact in a typical coronal slice preparation. To investigate how integration of synaptic inputs to MOC neurons affects their action potential firing patterns, with a focus on newly described inhibition, we developed a preparation in which we could stimulate the diverse afferents to MOC neurons from one ear in the most physiologically realistic way possible, but with the technical benefits of in vitro brain slice experiments.

The wedge slice is a modified thick slice preparation designed for investigation of circuit integration in MOC neurons (schematized in Figure 1A). On the thick side of the slice, the wedge contains the severed axons of the auditory nerve (termed “auditory nerve root” hereafter) as they enter the brainstem from the periphery and synapse in the CN. The auditory nerve root can be electrically stimulated to evoke neurotransmitter release and synaptic activation of cells of the fully intact CN42,43,44,45,46. This stimulation format has several benefits for circuit analysis. First, instead of directly stimulating the T-stellate and GBC axons that provide afferent input to the MOC neurons, we stimulate the AN to allow activation of intrinsic circuits abundant in the CN. These circuits modulate the output of CN neurons to their targets throughout the brain, including MOC neurons46,47,48,49,50,51. Second, the polysynaptic activation of afferent circuits from the AN through the CN upstream of MOC neurons allows for more natural activation timing and for plasticity to occur at these synapses as they would in vivo during auditory stimulation. Third, we can vary our stimulation patterns to mimic AN activity. Finally, both excitatory and inhibitory monaural projections to MOC neurons are intact in the wedge slice, and their integration can be measured at an MOC neuron with the precision of patch-clamp electrophysiology. As a whole, this activation scheme provides a more intact circuit to the MOC neurons compared to a typical brain slice preparation. This brainstem wedge slice can also be used to investigate other auditory areas which receive inhibitory input from ipsilateral MNTB including the lateral superior olive, superior olivary nucleus and medial superior olive10,11,52,53,54,55,56. Beyond our specific preparation, this slicing method can be used or modified to evaluate other systems with the benefits of maintaining connectivity of long-range inputs and improving visualization of neurons for a variety of single-cell resolution electrophysiology or imaging techniques.

This protocol requires the use of a vibratome stage or platform which can be tilted approximately 15°. Here we use a commercially available 2-piece magnetic stage where the “stage” is a metal disc with a curved bottom placed in a concave magnetic “stage base.” The stage can then be shifted to adjust the slice angle. Concentric circles on the stage base are used to estimate the angle reproducibly. The stage and stage base are placed in the slicing chamber, where the magnetic stage base can also be rotated.

Protokół

All experimental procedures were approved by the National Institute of Neurological Disorders and Stroke/National Institute on Deafness and Other Communication Disorders Animal Care and Use Committee.

1. Experimental preparations

NOTE: Details regarding slice preparation including slicing solution, slicing temperature, slice incubation temperature and apparatus (etc.) are specific for brainstem preparation performed in this experiment. Slice incubation details can be altered per laboratory experience.

  1. Prepare internal solutions for patch-clamping.
    1. Prepare voltage clamp solution containing (in mM) 76 Cs-methanesulfonate, 56 CsCl, 1 MgCl2, 1 CaCl2, 10 HEPES, 10 EGTA, 0.3 Na-GTP, 2 Mg-ATP, 5 Na2-phosphocreatine, 5 QX-314, and 0.01 Alexa Fluor-488 hydrazide. Adjust the pH to 7.2 with CsOH.
    2. Prepare current clamp solution containing (in mM) 125 K-gluconate, 5 KCl, 1 MgCl2, 0.1 CaCl2, 10 HEPES, 1 EGTA, 0.3 Na-GTP, 2 Mg-ATP, 1 Na2-phosphocreatine, and 0.01 Alexa Fluor-488 hydrazide. Adjust the pH to 7.2 with KOH.
  2. Prepare 100 mL of 4% agar by adding 4 g of agar to 100 mL hot (near boiling) water. Place on heated stir plate to maintain temperature and stir until completely dissolved. Pour into 100 mm plastic Petri dishes to approximately 1 cm depth and let cool. Refrigerate until needed.
  3. Prepare 1 L artificial cerebrospinal fluid (ACSF) containing in mM: 124 NaCl, 1.2 CaCl2, 1.3 MgSO4, 5 KCl, 26 NaHCO3, 1.25 KH2PO4, and 10 dextrose. Bubble with carbogen (5% CO2 / 95% O2) for at least 10 min, then adjust final pH to 7.4 with 1 M NaOH if needed. Maintain oxygenation and pH of solution by bubbling continuously with carbogen throughout experiment.
  4. Prepare 200 mL slicing solution by adding 1 mM kynurenic acid to ACSF. Sonicate solution in a sonicating water bath for 10 min until kynurenic acid is dissolved. Continuously bubble with carbogen and place on ice.
    CAUTION: Use appropriate personal protective equipment when handling kynurenic acid.
  5. Mount an appropriate blade in the vibratome following the manufacturer’s instructions. Chill vibratome slicing chamber by surrounding it with ice.

2. Brain removal with intact auditory nerve root for stimulation

NOTE: Mice for these experiments were obtained by crossing ChAT-IRES-Cre transgenic mice on a C57BL/6J background with tdTomato reporter mice (Ai14). Mice used for histology and electrophysiology were post-hearing onset (P14-P23), which is around P12 in mice. Neurons expressing tdTomato in the ventral nucleus of the trapezoid body (VNTB) have been previously characterized as MOC neurons in this mouse line57.

  1. Euthanize (e.g., CO2 asphyxiation) and decapitate the animal using approved institutional procedures.
  2. Using a razor blade, cut the skin at the midline of the skull from the nose to the back of the neck. Peel back skin to expose the skull.
  3. Using small scissors, make an incision in the skull through the midline starting at the base (caudal end near spinal cord) of the skull and continuing towards the nose.
  4. At the lambda suture, make cuts in the skull from the midline, lateral toward the ear on both sides. Peel back the skull to expose the brain.
  5. Starting at the rostral end, gently lift the brain away from the skull with a small lab spatula or blunt forceps. Cut the optic nerve and continue to gently work the brain backwards, exposing the ventral surface.
  6. Cut the trigeminal nerves by pinching them with fine forceps near the ventral surface of the brainstem.
    NOTE: Do this carefully as the vestibulocochlear nerve lies just below this and needs to be intact for eventual stimulation.
  7. Place the preparation in a glass Petri dish filled with cold slicing solution. Place the dish under a dissecting microscope. Gently bubble with carbogen.
  8. Trim the facial nerve close to the brainstem and expose the vestibulocochlear nerve.
  9. Using fine forceps, push the tips into the foramina where the vestibulocochlear nerve exits the skull as far as possible and pinch the nerve to sever it, leaving the nerve root attached to the brainstem. Repeat this on the other side.
  10. Once both nerve roots are free, remove the meninges and vasculature from the ventral surface of the brainstem near the trapezoid body.
  11. Free the brain completely from the skull by pinching the remaining cranial nerves and connective tissue taking care to preserve the remaining spinal cord if possible.

3. Block and mount brain on stage (magnetic disc)

  1. Prepare the surface of the brain to fix to the stage by blocking the brain at the level of the optic chiasm.
    1. With the ventral surface up, stabilize the brain using a blunt tool to gently immobilize the spinal cord so that the brain does not tilt during the following step.
    2. At the level of the optic chiasm, use open forceps to create the plane for blocking the brain by inserting through the brain down to the bottom of the dish. Insert the forceps at an angle of approximately 20˚ from vertical so that the tips exit the dorsal surface of the brain caudal to the optic chiasm.
    3. Cut along the forceps using the razor blade.
  2. Glue the brain to the surface of the stage.
    1. Prepare a small block (~1 cm3) of 4% agar for supporting the brain.
    2. Place a small drop of glue on the stage and spread it into a rectangle so both the brain and agar block can be glued down.
    3. Using forceps, carefully lift the brain and gently dab the excess liquid using the edge of a paper towel. Place the blocked surface onto the glue, ventral surface will be towards the blade during slicing.
    4. Push the agar block gently against the dorsal surface of the brain to support it during slicing and to ensure proper brain positioning (i.e., angle).

4. Slice brain to create wedge slice

NOTE: Prepare a brain slice using vibratome that has the cochlear nerve root on the thick side and medial olivocochlear (MOC) neurons and the medial nucleus of the trapezoid body (MNTB) on the thin side.

  1. Place the magnetic disc with attached brain onto the stage base and place it in the slicing chamber with the ventral surface of the brain oriented towards the blade.
  2. Fill the chamber with ice cold slicing solution and bubble with carbogen.
  3. Lower the blade into the solution and cut slices caudal to the region of interest to make sure the slices are symmetrical. If the slices appear asymmetrical, tilt the stage slightly to obtain symmetry.
    NOTE: Blade speeds between 0.05-0.10 mm/s were effective for cutting healthy slices and may vary depending on animal age and brain region.
  4. Once the slices are symmetrical, shift the stage ~15˚ (corresponding to approximately 3 concentric rings on the stage base) to one side.
    NOTE: Shift the stage away from the auditory nerve root that you want to preserve in the slice.
  5. Continue slicing carefully until the auditory nerve root is close to the surface on one side, and the facial nerve can be seen at the surface of the other side.
  6. Shift the stage back 15˚ to the original position.
  7. Move the blade away from the tissue and spin the stage base 90° so that the lateral edge of the thin side is facing the blade. Lower the blade several hundred microns and then slowly bring the blade close to the edge of the tissue. Repeat this until the blade touches the lateral edge. Lower the blade to the desired thickness of the thin edge of the slice, here an additional two hundred microns.
    NOTE: The resulting slice is ideally ~300 mm thick at the level of the ventral nucleus of the trapezoid body (VNTB) on the side where patch clamping will take place.
  8. Move the blade back away from the tissue and spin the stage base back so that the ventral surface is facing it.
  9. Make the cut that designates the rostral surface of the wedge slice. Transfer the slice to a piece of interface paper (1 cm2) caudal surface down. Move the slice to the incubation chamber or other suitable incubation apparatus for recovery (30 min at 35 °C).
    NOTE: The facial nerve should be visible on both hemispheres of the slice on the rostral surface (see Figure 1B).

5. Electrophysiology set-up and recording

  1. Place the wedge slice in the recording chamber and secure slice with a harp or stabilizing system. Perfuse the tissue continuously at a rate of 7-10 mL/min with warm (35 °C) ACSF bubbled with carbogen.
  2. Identify genetically labeled MOC neurons in the VNTB using epifluorescence with 561 nm emission filters for patch-clamp recordings. Flip slice if there are no potentially patchable cells.
  3. Using DIC optics, focus on the auditory nerve root on the thick side of the slice and use a micromanipulator to move the bipolar tungsten stimulating electrode down to the auditory nerve root and gently into the surface of the tissue.
    NOTE: Suction electrodes have been used in auditory nerve stimulation experiments in other labs. Theta glass electrodes, or optical stimulation methods can be employed if applicable to other specific preparations.
  4. Move the field of view back to the VNTB to choose an MOC neuron to target for patch clamp electrophysiology.
  5. Fill a recording pipette with appropriate internal solution for the proposed experiment.
  6. Patch and record from the MOC neuron in the whole-cell configuration. Compensate membrane capacitance and series resistance if required.
  7. Adjust electrical stimulation amplitude of the auditory nerve root to obtain consistent postsynaptic events in the MOC neuron.
    NOTE: It may be necessary to move the stimulation electrode.
  8. Run appropriate stimulation protocols to observe evoked synaptic currents in MOC (voltage clamp) or action potential patterns (current clamp).
    NOTE: The wedge slice preparation can be used with any typical patch-clamp tools such as loose patch recordings, pharmacology, optogenetics, calcium imaging, neurotransmitter uncaging, etc.

6. Histological confirmation of brainstem nuclei

NOTE: This is done with cresyl violet staining, in fixed, re-sectioned wedge slice. This method allows for visualization of nuclei which are contained in the slice.

  1. After preparing a wedge slice, submerge slice in fixative (4% PFA in PBS) overnight. Rinse the slice 3x for 10 min in PBS (room temperature on a shaker), then place in 30% sucrose in PBS overnight at 4 °C to cryoprotect.
  2. Re-section the slice on a freezing microtome (40-70 mm) and collect serial sections in a 24 well plate in PBS.
  3. Mount sections on gelatin coated slides and let dry completely. Place slides in slide carriage.
  4. Prepare cresyl violet solutions
    1. Prepare 1% cresyl violet acetate by mixing 5 g cresyl violet acetate in 500 mL dH2O
    2. Prepare acetate buffer by first preparing 90 mL solution A (540 mL glacial acetic acid + 89.46 mL dH2O) and 10 mL solution B (136 mg sodium acetate in 10 mL dH2O). Combine solution A and solution B yielding the acetate buffer.
    3. Combine 1% cresyl violet acetate with the acetate buffer 1:1 for 0.5% cresyl violet in acetate buffer. Filter before use.
    4. Prepare 95% and 70% ethanol by diluting 100% ethanol with appropriate volumes of dH2O
  5. Perform cresyl violet staining protocol. Move the slide carriage through solution trays, blotting excess solution on a paper towel between trays: xylene – 5 min; 95% ethanol – 3 min; 70% ethanol – 3 min; dH2O – 3 min; 0.5% cresyl violet solution – 8-14 min monitoring frequently until nuclear staining becomes dark purple; dH2O – 3 min; 70% ethanol – 3 min; 95% ethanol – 1-2 min; 100% ethanol – dip slides twice; xylene – 5 min; xylene: 25 min until mounting is performed.
    CAUTION: Use xylenes only under a fume hood.
  6. Remove slides from xylene one at a time and immediately place cover slips on slides using mounting medium. Allow mounting medium to dry (overnight).
  7. Image sections.

7. Biocytin labeling for anterograde tracing of axons in live, unfixed tissue

  1. Prepare a wedge slice as above (Steps 2-4).
  2. Transfer the slice to interface paper (~1 cm2). Under a dissecting microscope, locate the CN on the thick side of the slice.
  3. Carefully remove excess ACSF from the area surrounding the slice by twisting up a corner of a tissue paper to draw the ACSF away from the tissue. This prevents the biocytin from spreading to surrounding areas of the slice which could lead to uptake into cells outside the CN.
  4. With fine forceps, select a small crystal of biocytin and place it on the surface of the CN. Gently press the crystal into the tissue to promote contact with neurons and subsequent uptake into somata. Repeat this step to cover the desired region of interest, in this case CN regions containing T-stellate and GBC neurons.
  5. Place the slice in an incubation chamber. Allow the slice to incubate for 2-4 h at 35 °C to allow for the uptake and transport of the biocytin. After incubation, rinse the slice in ACSF to remove any biocytin particles.
  6. Place slice in fixative (4% PFA in PBS) overnight. Rinse 3x for 10 min in PBS.
  7. Cryoprotect slice in 30% sucrose in PBS overnight at 4 °C or until the slice sinks.
  8. Resect the tissue to produce transverse sections on a freezing microtome at 70-100 mm.
  9. Process tissue using standard immunohistochemical methods with a fluorescently conjugated streptavidin.
    NOTE: Additional immunohistochemistry can be performed on the sections if helpful for labeling presynaptic cell bodies, axons, receptors, or other synaptic molecules important for circuit visualization (i.e., primary antibody steps should not adversely affect biocytin secondary visualization).
  10. Image the tissue.

Wyniki

Histological examination of wedge slice
For our investigation of auditory brainstem neuron function, the wedge slice preparation was designed to contain the auditory nerve root and CN contralateral to the MOC neurons targeted for recordings (example slice shown in Figure 1B). Initial histological examination of the preparation is important to confirm that the slice contains the nuclei necessary for circuit activation and that axonal projections are intact. Two cell typ...

Dyskusje

The slicing procedure described here termed a wedge slice is powerful for maintaining intact presynaptic neuronal circuitry, but with the accessibility of brain slice experimentation for analysis of neuronal function. Great care must be taken in several initial steps in order to maximize utility of the preparation for circuit analysis. The dimensions of the wedge should be confirmed using histological examination, which is integral for confirmation that both presynaptic nuclei and their axonal projections are contained w...

Ujawnienia

The authors have nothing to disclose.

Podziękowania

This research was supported by the Intramural Research Program of the NIH, NIDCD, Z01 DC000091 (CJCW).

Materiały

NameCompanyCatalog NumberComments
Experimental Preparations
Agar, powderFisher ScientificBP14235004% agar block used to stabilize brain tissue during vibratome sectioning
AlexaFluor Hydrazide 488InvitrogenA10436Fluorophore used in internal solution to confirm successful MOC neuron patch
Analytical BalanceGeneses Scientific (Intramalls)AV114Weighing chemicals
Double edged razor bladeTed Pella121-6Vibratome cutting blade
Kynurenic acid (5g)Sigma AldrichK3375-5GSlicing ACSF additive used to reduce neuron activity during dissection and slicing in order to improve tissue health for patch clamping
pH MeterFisher Scientific (Intramalls)13-620-451Solution pH tester
Plastic petri dishes 100mm dia X 20mmFisher Scientific (Intramalls)12-556-0024% Agar Prep
Stirring HotplateFisher Scientific (Intramalls)11-500-150Heating for 4% Agar preparation
Dissection and Slicing
BiocytinSigma AldrichB4261-250MGChemical used for axonal tracing (conjugated to Streptavidin 488)
Dissecting MicroscopeAmscopeSM-1BNFor precision dissection during brain removal
Dumont #5 ForcepsFine Science Tools11252-20Fine forceps dissection tool
Economy tweezers #3WPI501976Forceps dissection tool
Glass Petri Dish 150mm dia x 15mm HFisher Scientific (Intramalls)08-747EDissection dish
Interface paper (203 X 254mm PCTE Membrane 10um)Thomas Scientific1220823Slice incubation/biocytin application
Leica VT1200S VibratomeLeica1491200S001Vibratome for wedge slice sectioning
Mayo scissorsRobozRS-6872Dissection tool
Single-edged carbon steel bladesFisher Scientific (Intramalls)12-640Razor blade for dissection
Specimen disc, orientingLeica14048142068Specialized vibratome stage for reproducible tilting
SpoonulaFisherSci14-375-10Dissection tool
Super GlueNewegg15187Used for glueing tissue to vibratome stage
Vannas Spring ScissorsFine Science Tools91500-09Dissection tool
Electrophysiology
A1R Upright Confocal MicroscopeNikon InstrumentsElectrophysiology and imaging microscope, can be any microscope compatible with electrophysiology
Electrode Borosilicate glass w/ Filament OD 1.5mm, ID 1.1mm, 10 cm longSutter InstrumentBF150-110-10Patch clamping pipette glass
Electrode Filler MicroFilWPICMF20GPatch electrode pipette filler
In-line solution heaterWarner Instruments (GSAdvantage)SH-27BSlice perfusion system heater
Multi-Micromanipulator SystemsSutter IntrumentsMPC-200 with MP285Micromanipulators for patch clamp and stimulation electrode placement
P-1000 horizontal pipette puller for glass micropipettesSutter instrumentsFG-P1000Patch clamp pipetter puller
Patch-clamp amplifier and SoftwareHEKAEPC-10 / Patchmaster NextCan be any amplifier/software
Recording ChamberWarner InstrumentsRC26GSlice "bath" during recording
Recording Chamber HarpWarner Instruments640253Stablizes slice during electrophysiology recording
Slice Incubation ChamberCustom BuildHeated, oxygenated holding chamber for slices during recovery after slicing
Stimulus isolation unitA.M.P.I.Iso-FlexStimulus isolation unit for electrophysiology
Syringe 60CCFischer Scientific (Intramalls)14-820-11Electrophysiology perfusion fluid handling
Temperature controllerWarner Instruments (GSAdvantage)TC-324CSlice perfusion system temperature controller
Tubing 1/8 OD 1/16 IDFischer Scientific (Intramalls)14-171-129Electrophysiology perfusion fluid handling
Tugsten concentric bipolar microelectrodeWPITM33CCINSStimulating electrode for electrophysiology
Histology
24 well PlateFisher Scientific (Intramalls)12-556006Histology slice collection and immunostaining
Alexa Fluor 488 StreptavidinJackson Immuno labs016-540-084Secondary antibody for biocytin visualization
Corning Orbital ShakerSigmaCLS6780FPShaker for immunohistochemistry agitation
Cresyl Violet AcetateSigma Aldrich (Intramalls)C5042-10GCellular stain for histology
Disposable Microtome BladesFisher Scientific22-210-052Sliding microtome blade
Filter-syringe Nalgene 4mm Cellulose Acetate 0.2umFisher Scientific (Intramalls)09-740-34ASyringe filter for filling recording pipettes with internal solution
Fluoromount-G Slide Mounting MediumFisher ScientificOB100-01Immunohistochemistry fluorescence mounting medium
glass slide staining dish with rackFisher Scientific (Intramalls)08-812Cresyl Violet staining chamber
Microm HM450 Sliding MicrotomeThermoFisher910020Freezing microtome for histology
Microscope Cover Glasses: Rectangles 50mm X 24mmFisher Scientific (Intramalls)12-543DHistochemistry slide cover glass
Permount mounting mediumFisher ScientificSP15-100Cresyl violet section mounting medium
Superfrost SlidesFisher Scientific22-034980Histology slides

Odniesienia

  1. Campbell, J. P., Henson, M. M. Olivocochlear neurons in the brainstem of the mouse. Hearing Research. 35 (2-3), 271-274 (1988).
  2. Grothe, B., Sanes, D. H. Synaptic inhibition influences the temporal coding properties of medial superior olivary neurons: An in vitro study. Journal of Neuroscience. 14, 1701-1709 (1994).
  3. Kotak, V. C., Sanes, D. H. Long-lasting inhibitory synaptic depression is age- and calcium-dependent. Journal of Neuroscience. 20 (15), 5820-5826 (2000).
  4. Smith, A. J., Owens, S., Forsythe, I. D. Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. The Journal of Physiology. 529 (3), 681-698 (2000).
  5. Scott, L. L., Mathews, P. J., Golding, N. L. Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. Journal of Neuroscience. 25 (35), 7887-7895 (2005).
  6. Fischl, M. J., Combs, T. D., Klug, A., Grothe, B., Burger, R. M. Modulation of synaptic input by GABAB receptors improves coincidence detection for computation of sound location. Journal of Physiology. 590 (13), 3047-3066 (2012).
  7. Clause, A., et al. The Precise Temporal Pattern of Prehearing Spontaneous Activity Is Necessary for Tonotopic Map Refinement. Neuron. 82 (4), 822-835 (2014).
  8. Oertel, D. Use of brain slices in the study of the auditory system: Spatial and temporal summation of synaptic inputs in cells in the anteroventral cochlear nucleus of the mouse. Journal of the Acoustical Society of America. 78 (1), 328-333 (1985).
  9. Hermann, J., Pecka, M., Von Gersdorff, H., Grothe, B., Klug, A. Synaptic transmission at the calyx of held under in vivo-like activity levels. Journal of Neurophysiology. 98 (2), 807-820 (2007).
  10. Jercog, P. E., Svirskis, G., Kotak, V. C., Sanes, D. H., Rinzel, J. Asymmetric excitatory synaptic dynamics underlie interaural time difference processing in the auditory system. PLoS Biology. 8 (6), 1000406 (2010).
  11. Roberts, M. T., Seeman, S. C., Golding, N. L. A mechanistic understanding of the role of feedforward inhibition in the mammalian sound localization circuitry. Neuron. 78 (5), 923-935 (2013).
  12. Sinclair, J. L., et al. Sound-evoked activity influences myelination of brainstem axons in the trapezoid body. Journal of Neuroscience. 37 (34), 8239-8255 (2017).
  13. Wang, J., et al. Myelination of the postnatal mouse cochlear nerve at the peripheral-central nervous system transitional zone. Frontiers in Pediatrics. 1, 5-8 (2013).
  14. Long, P., Wan, G., Roberts, M. T., Corfas, G. Myelin development, plasticity, and pathology in the auditory system. Developmental Neurobiology. 78 (2), 80-92 (2018).
  15. Leão, R. M., et al. Presynaptic Na+ channels: Locus, development, and recovery from inactivation at a high-fidelity synapse. Journal of Neuroscience. 25 (14), 3724-3738 (2005).
  16. Fex, J. Efferent Inhibition in the Cochlea Related to Hair-Cell dc Activity: Study of Postsynaptic Activity of the Crossed Olivocochlear Fibres in the Cat. The Journal of the Acoustical Society of America. 41 (3), 666-675 (1967).
  17. Mountain, D. C. Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science. 210 (4465), 71-72 (1980).
  18. Siegel, J. H., Kim, D. O. Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hearing Research. 6 (2), 171-182 (1982).
  19. Guinan, J. J. Cochlear efferent innervation and function. Current Opinion in Otolaryngology & Head and Neck Surgery. 18 (5), 447-453 (2010).
  20. Elgoyhen, A. B., Katz, E. The efferent medial olivocochlear-hair cell synapse. Journal of Physiology-Paris. 106 (1-2), 47-56 (2012).
  21. Galambos, R. Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. Journal of Neurophysiology. 19 (5), 424-437 (1956).
  22. Desmedt, J. E. Auditory-Evoked Potentials from Cochlea to Cortex as Influenced by Activation of the Efferent OlivoCochlear Bundle. Journal of the Acoustical Society of America. 34 (9), 1478-1496 (1962).
  23. Wiederhold, M. L., Kiang, N. Y. S. Effects of Electric Stimulation of the Crossed Olivocochlear Bundle on Single Auditory-Nerve Fibers in the Cat. The Journal of the Acoustical Society of America. 48 (4), 950-965 (1970).
  24. Wiederhold, M. L., Peake, W. T. Efferent Inhibition of Auditory-Nerve Responses: Dependence on Acoustic-Stimulus Parameters. Journal of the Acoustical Society of America. 40 (6), 1427-1430 (1966).
  25. Geisler, D. C. Hypothesis on the function of the crossed olivocochlear bundle. Journal of the Acoustical Society of America. 56 (6), 1908-1909 (1974).
  26. Guinan, J. J., Gifford, M. L. Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Tuning curves and thresholds at CF. Hearing Research. 37 (1), 29-45 (1988).
  27. Rajan, R. Involvement of cochlear efferent pathways in protective effects elicited with binaural loud sound exposure in cats. Journal of Neurophysiology. 74 (2), 582-597 (1995).
  28. Rajan, R. Effect of electrical stimulation of the crossed olivocochlear bundle on temporary threshold shifts in auditory sensitivity. II. Dependence on the level of temporary threshold shifts. Journal of Neurophysiology. 60 (2), 569-579 (1988).
  29. Reiter, E. R., Liberman, M. C. Efferent-mediated protection from acoustic overexposure: Relation to slow effects of olivocochlear stimulation. Journal of Neurophysiology. 73 (2), 506-514 (1995).
  30. Taranda, J., et al. A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection. PLoS Biology. 7 (1), 1000018 (2009).
  31. Maison, S. F., Usubuchi, H., Liberman, C. M. Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. Journal of Neuroscience. 33 (13), 5542-5552 (2013).
  32. Tong, H., et al. Protection from noise-induced hearing loss by Kv2. 2 potassium currents in the central medial olivocochlear system. Journal of Neuroscience. 33 (21), 9113-9121 (2013).
  33. Boero, L. E., et al. Enhancement of the medial olivocochlear system prevents hidden hearing loss. Journal of Neuroscience. 38 (34), 7440-7451 (2018).
  34. Spirou, G. A., Brownell, W. E., Zidanic, M. Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. Journal of Neurophysiology. 63 (5), 1169-1190 (1990).
  35. von Gersdorff, H., Borst, J. G. G. Short-term plasticity at the calyx of held. Nature Reviews Neuroscience. 3 (1), 53-64 (2002).
  36. Smith, P. H., Joris, P. X., Carney, L. H., Yin, T. C. T. Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. Journal of Comparative Neurology. 304 (3), 387-407 (1991).
  37. Kuwabara, N., DiCaprio, R. A., Zook, J. M. Afferents to the medial nucleus of the trapezoid body and their collateral projections. Journal of Comparative Neurology. 314 (4), 684-706 (1991).
  38. Friauf, E., Ostwald, J. Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Experimental Brain Research. 73 (2), 263-284 (1988).
  39. De Venecia, R. K., Liberman, M. C., Guinan, J. J., Brown, M. C. Medial olivocochlear reflex interneurons are located in the posteroventral cochlear nucleus: A kainic acid lesion study in guinea pigs. Journal of Comparative Neurology. 487 (4), 345-360 (2005).
  40. Darrow, K. N., Benson, T. E., Brown, M. C. Planar multipolar cells in the cochlear nucleus project to medial olivocochlear neurons in mouse. Journal of Comparative Neurology. 520 (7), 1365-1375 (2012).
  41. Brown, M. C., De Venecia, R. K., Guinan, J. J. Responses of medial olivocochlear neurons: Specifying the central pathways of the medial olivocochlear reflex. Experimental Brain Research. 153 (4), 491-498 (2003).
  42. Wang, Y., Manis, P. B. Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. Journal of Neurophysiology. 94 (3), 1814-1824 (2005).
  43. Golding, N. L., Robertson, D., Oertel, D. Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision. Journal of Neuroscience. 15 (4), 3138-3153 (1995).
  44. Ferragamo, M. J., Golding, N. L., Oertel, D. Synaptic inputs to stellate cells in the ventral cochlear nucleus. Journal of Neurophysiology. 79 (1), 51-63 (1998).
  45. Oertel, D. Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. Journal of Neuroscience. 3 (10), 2043-2053 (1983).
  46. Xie, R., Manis, P. B. Radiate and planar multipolar neurons of the mouse anteroventral cochlear nucleus: Intrinsic excitability and characterization of their auditory nerve input. Frontiers in Neural Circuits. 11, 1-17 (2017).
  47. Wu, S., Oertel, D. Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine. The Journal of Neuroscience. 6 (9), 2691-2706 (1986).
  48. Xie, R., Manis, P. B. Target-specific IPSC kinetics promote temporal processing in auditory parallel pathways. Journal of Neuroscience. 33 (4), 1598-1614 (2013).
  49. Wickesberg, R. E., Oertel, D. Delayed, frequency-specific inhibition in the cochlear nuclei of mice: A mechanism for monaural echo suppression. Journal of Neuroscience. 10 (6), 1762-1768 (1990).
  50. Campagnola, L., Manis, P. B. A map of functional synaptic connectivity in the mouse anteroventral cochlear nucleus. Journal of Neuroscience. 34 (6), 2214-2230 (2014).
  51. Doucet, J. R., Ryugo, D. K. Projections from the ventral cochlear nucleus to the dorsal cochlear nucleus in rats. Journal of Comparative Neurology. 385 (2), 245-264 (1997).
  52. Kopp-Scheinpflug, C., et al. The sound of silence: Ionic mechanisms encoding sound termination. Neuron. 71 (5), 911-925 (2011).
  53. Alamilla, J., Gillespie, D. C. Maturation of Calcium-Dependent GABA, Glycine, and Glutamate Release in the Glycinergic MNTB-LSO Pathway. PLoS One. 8 (9), 0075688 (2013).
  54. Spangler, K. M., Warr, W. B., Henkel, C. K. The projections of principal cells of the medial nucleus of the trapezoid body in the cat. Journal of Comparative Neurology. 238 (3), 249-262 (1985).
  55. Kramer, F., et al. Inhibitory glycinergic neurotransmission in the mammalian auditory brainstem upon prolonged stimulation: Short-term plasticity and synaptic reliability. Frontiers in Neural Circuits. 8, 1-22 (2014).
  56. Roberts, M. T., Seeman, S. C., Golding, N. L. The relative contributions of MNTB and LNTB neurons to inhibition in the medial superior olive assessed through single and paired recordings. Frontiers in Neural Circuits. 8, 1-14 (2014).
  57. Torres Cadenas, L., Fischl, M. J., Weisz, C. J. C. Synaptic Inhibition of Medial Olivocochlear Efferent Neurons by Neurons of the Medial Nucleus of the Trapezoid Body. The Journal of neuroscience the official journal of the Society for Neuroscience. 40 (3), 509-525 (2020).
  58. Brown, M. C., Mukerji, S., Drottar, M., Windsor, A. M., Lee, D. J. Identification of inputs to olivocochlear neurons using transneuronal labeling with pseudorabies virus (PRV). JARO - Journal of the Association for Research in Otolaryngology. 14 (5), 703-717 (2013).
  59. Morest, D. K. The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Research. 9 (2), 288-311 (1968).
  60. Warr, B. W. Fiber degeneration following lesions in the multipolar and globular cell areas in the ventral cochlear nucleus of the cat. Brain Research. 40 (2), 247-270 (1972).
  61. Osen, K. K. Cytoarchitecture of the cochlear nuclei in the cat. Journal of Comparative Neurology. 136 (4), 453-483 (1969).
  62. Cant, N. B., Morest, D. K. The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neuroscience. 4 (12), 1925-1945 (1979).
  63. Cant, N. B., Morest, D. K. Organization of the neurons in the anterior division of the anteroventral cochlear nucleus of the cat. Light-microscopic observations. Neuroscience. 4 (12), 1909-1923 (1979).
  64. Lauer, A. M., Connelly, C. J., Graham, H., Ryugo, D. K. Morphological Characterization of Bushy Cells and Their Inputs in the Laboratory Mouse (Mus musculus) Anteroventral Cochlear Nucleus. PLoS One. 8 (8), 1-16 (2013).
  65. Harrison, J. M., Warr, W. B. A study of the cochlear nuclei and ascending auditory pathways of the medulla. Journal of Comparative Neurology. 119 (3), 341-379 (1962).
  66. Robertson, D., Gummer, M. Physiological and morphological characterization of efferent neurones in the guinea pig cochlea. Hearing Research. 20 (1), 63-77 (1985).
  67. Bledsoe, S. C., et al. Ventral cochlear nucleus responses to contralateral sound are mediated by commissural and olivocochlear pathways. Journal of Neurophysiology. 102 (2), 886-900 (2009).
  68. Zhou, J., Zeng, C., Cui, Y., Shore, S. Vesicular glutamate transporter 2 is associated with the cochlear nucleus commissural pathway. JARO - Journal of the Association for Research in Otolaryngology. 11 (4), 675-687 (2010).
  69. Kuenzel, T. Modulatory influences on time-coding neurons in the ventral cochlear nucleus. Hearing Research. 384, 107824 (2019).
  70. Cant, N. B., Gaston, K. C. Pathways connecting the right and left cochlear nuclei. Journal of Comparative Neurology. 212 (3), 313-326 (1982).
  71. Feliciano, M., Saldana, E., Mugnaini, E. Direct projections from the rat primary auditory neocortex to nucleus sagulum, paralemniscal regions, superior olivary complex and cochlear nuclei. Auditory Neuroscience. 1 (3), 287-308 (1995).
  72. Mulders, W. H. A. M., Robertson, D. Evidence for direct cortical innervation of medial olivocochlear neurones in rats. Hearing Research. 144 (1-2), 65-72 (2000).
  73. Schofield, B. R., Coomes, D. L. Pathways from auditory cortex to the cochlear nucleus in guinea pigs. Hearing Research. 216-217 (1-2), 81-89 (2006).
  74. Meltzer, N. E., Ryugo, D. K. Projections from auditory cortex to cochlear nucleus: A comparative analysis of rat and mouse. Anatomical Record - Part A Discoveries in Molecular, Cellular, and Evolutionary Biology. 288 (4), 397-408 (2006).
  75. Schofield, B. R., Cant, N. B. Descending auditory pathways: Projections from the inferior colliculus contact superior olivary cells that project bilaterally to the cochlear nuclei. Journal of Comparative Neurology. 409 (2), 210-223 (1999).
  76. Thompson, A. M., Schofield, B. R. Afferent projections of the superior olivary complex. Microscopy Research and Technique. 51 (4), 330-354 (2000).
  77. Woods, C. I., Azeredo, W. J. Noradrenergic and serotonergic projections to the superior olive: Potential for modulation of olivocochlear neurons. Brain Research. 836 (1-2), 9-18 (1999).
  78. Mulders, W. H. A. M., Robertson, D. Morphological relationships of peptidergic and noradrenergic nerve terminals to olivocochlear neurones in the rat. Hearing Research. 144 (1-2), 53-64 (2000).
  79. Thompson, A. M., Thompson, G. C. Light microscopic evidence of serotoninergic projections to olivocochlear neurons in the bush baby (Otolemur garnettii). Brain Research. 695 (2), 263-266 (1995).
  80. Wang, X., Robertson, D. Substance P-induced inward current in identified auditory efferent neurons in rat brain stem slices. Journal of Neurophysiology. 80 (1), 218-229 (1998).
  81. Taberner, A. M., Liberman, M. C. Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology. 93 (1), 557-569 (2005).
  82. Galambos, R., Davis, H. The response of single auditory-nerve stimulation. Journal of Neurophysiology. 6 (1), 39-57 (1943).
  83. Sachs, M. B., Abbas, P. J. Rate versus level functions for auditory-nerve fibers in cats: Tone-burst stimuli. Journal of the Acoustical Society of America. 56 (6), 1835-1847 (1974).
  84. Zhang, X., Heinz, M. G., Bruce, I. C., Carney, L. H. A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. The Journal of the Acoustical Society of America. 109 (2), 648-670 (2001).
  85. Zilany, M. S. A., Bruce, I. C., Carney, L. H. Updated parameters and expanded simulation options for a model of the auditory periphery. The Journal of the Acoustical Society of America. 135 (1), 283-286 (2014).
  86. Franken, T. P., Smith, P. H., Joris, P. X. In vivo whole-cell recordings combined with electron microscopy reveal unexpected morphological and physiological properties in the lateral nucleus of the trapezoid body in the auditory brainstem. Frontiers in Neural Circuits. 10, 1-20 (2016).

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

In VitroWedge Slice PreparationNeuronal Circuit ConnectivityBrain Slice ExperimentsPresynaptic ConnectionsPatch Clamp RecordingsPharmacologyActivity ImagingHistologyCranial NervesBrain DissectionSpinal Cord PreservationDissecting MicroscopeNerve Root AttachmentTrapezoid Body

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone