È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.

In questo articolo

  • Riepilogo
  • Abstract
  • Introduzione
  • Protocollo
  • Risultati
  • Discussione
  • Divulgazioni
  • Riconoscimenti
  • Materiali
  • Riferimenti
  • Ristampe e Autorizzazioni

Riepilogo

L'integrazione di diversi input sinaptici ai neuroni è meglio misurata in una preparazione che preserva tutti i nuclei pre-sinaptici per la tempismo naturale e la plasticità del circuito, ma le fette cerebrali in genere tagliano molte connessioni. Abbiamo sviluppato una fetta cerebrale modificata per imitare l'attività del circuito in vivo mantenendo la capacità di sperimentazione in vitro.

Abstract

Le tecniche di elettrofisiologia a fette in vitro misurano l'attività a singola cellula con una precisa risoluzione elettrica e temporale. Le fette cerebrali devono essere relativamente sottili per visualizzare e accedere correttamente ai neuroni per il bloccaggio delle patch o l'imaging, e l'esame in vitro dei circuiti cerebrali è limitato solo a ciò che è fisicamente presente nella fetta acuta. Per mantenere i benefici della sperimentazione di fette in vitro preservando una porzione maggiore di nuclei presnaptici, abbiamo sviluppato una nuova preparazione di fette. Questa "fetta di cuneo" è stata progettata per le registrazioni di elettrofisiologia patch-clamp per caratterizzare i diversi input monaurali e sound-driven ai neuroni olivocochlear mediali (MOC) nel tronco encefalico. Questi neuroni ricevono i loro input eccitatori e inibitori afferenti primari dai neuroni attivati dagli stimoli nell'orecchio contralaterale e dal corrispondente nucleo cocleare (CN). È stata progettata una fetta cerebrale asimmetrica che è più spessa nel dominio rostro-caudale sul bordo laterale di un emisfero e poi si assottiglia verso il bordo laterale dell'emisfero opposto. Questa fetta contiene, sul lato spesso, la radice nervosa uditiva che trasmette informazioni sugli stimoli uditivi al cervello, sui circuiti NC intrinseci e sia sulle vie afferenti inibitorie disinaptiche che trisintottiche che convergono sui neuroni MOC contralaterali. La registrazione viene eseguita dai neuroni MOC sul lato sottile della fetta, dove vengono visualizzati utilizzando l'ottica DIC per tipici esperimenti patch-clamp. La stimolazione diretta del nervo uditivo viene eseguita mentre entra nel tronco uditivo, consentendo l'attività intrinseca del circuito CN e la plasticità sinaptica a sinapsi a monte dei neuroni MOC. Con questa tecnica, si può imitare l'attivazione del circuito in vivo il più vicino possibile all'interno della fetta. Questa preparazione della fetta di cuneo è applicabile ad altri circuiti cerebrali in cui le analisi dei circuiti beneficeranno della conservazione della connettività a monte e degli input a lungo raggio, in combinazione con i vantaggi tecnici della fisiologia delle fette in vitro.

Introduzione

L'osservazione dell'attività dei circuiti neurali viene eseguita idealmente con input sensoriali e feedback nativi e connettività intatta tra le regioni cerebrali, in vivo. Tuttavia, l'esecuzione di esperimenti che danno una risoluzione a una cellula della funzione del circuito neurale è ancora limitata da sfide tecniche nel cervello intatto. Mentre l'elettrofisiologia extracellulare in vivo o i metodi di imaging multifotonica possono essere utilizzati per studiare l'attività in sistemi nervosi intatti, interpretare come diversi input integrino o misurino gli input sinaptici sottosoglie rimane difficile. Le registrazioni intere cellulari in vivo superano questi limiti....

Protocollo

Tutte le procedure sperimentali sono state approvate dal National Institute of Neurological Disorders and Stroke/National Institute on Deafness and Other Communication Disorders Animal Care and Use Committee.

1. Preparazioni sperimentali

NOTA: I dettagli relativi alla preparazione delle fette, tra cui la soluzione di affettare, la temperatura di affezione, la temperatura e l'apparato di incubazione delle fette (ecc.) sono specifici per la preparazione del tronco encefalico eseguita in questo esperimento. I dettagli dell'incubazione delle fette possono essere modificati per esperienza di laboratorio.

  1. Pre....

Risultati

Esame istologico della fetta di cuneo
Per la nostra indagine sulla funzione neuronale del tronco encefalico uditivo, la preparazione della fetta di cuneo è stata progettata per contenere la radice nervosa uditivo e il contralaterale CN ai neuroni MOC destinati alle registrazioni (fetta di esempio mostrata nella figura 1B). L'esame istologico iniziale del preparato è importante per confermare che la fetta contiene i nuclei necessari per l'attivazione del circuito e che l.......

Discussione

La procedura di affettare qui descritta come una fetta di cuneo è potente per mantenere intatti circuiti neuronali presnaptici, ma con l'accessibilità della sperimentazione della fetta cerebrale per l'analisi della funzione neuronale. Occorre fare molta attenzione in diversi passaggi iniziali al fine di massimizzare l'utilità della preparazione per l'analisi del circuito. Le dimensioni del cuneo devono essere confermate mediante esame istologico, che è parte integrante della conferma che sia i nuclei presnaptici che .......

Divulgazioni

Gli autori non hanno nulla da rivelare.

Riconoscimenti

Questa ricerca è stata supportata dal Programma di ricerca intramurale del NIH, NIDCD, Z01 DC000091 (CJCW).

....

Materiali

NameCompanyCatalog NumberComments
Experimental Preparations
Agar, powderFisher ScientificBP14235004% agar block used to stabilize brain tissue during vibratome sectioning
AlexaFluor Hydrazide 488InvitrogenA10436Fluorophore used in internal solution to confirm successful MOC neuron patch
Analytical BalanceGeneses Scientific (Intramalls)AV114Weighing chemicals
Double edged razor bladeTed Pella121-6Vibratome cutting blade
Kynurenic acid (5g)Sigma AldrichK3375-5GSlicing ACSF additive used to reduce neuron activity during dissection and slicing in order to improve tissue health for patch clamping
pH MeterFisher Scientific (Intramalls)13-620-451Solution pH tester
Plastic petri dishes 100mm dia X 20mmFisher Scientific (Intramalls)12-556-0024% Agar Prep
Stirring HotplateFisher Scientific (Intramalls)11-500-150Heating for 4% Agar preparation
Dissection and Slicing
BiocytinSigma AldrichB4261-250MGChemical used for axonal tracing (conjugated to Streptavidin 488)
Dissecting MicroscopeAmscopeSM-1BNFor precision dissection during brain removal
Dumont #5 ForcepsFine Science Tools11252-20Fine forceps dissection tool
Economy tweezers #3WPI501976Forceps dissection tool
Glass Petri Dish 150mm dia x 15mm HFisher Scientific (Intramalls)08-747EDissection dish
Interface paper (203 X 254mm PCTE Membrane 10um)Thomas Scientific1220823Slice incubation/biocytin application
Leica VT1200S VibratomeLeica1491200S001Vibratome for wedge slice sectioning
Mayo scissorsRobozRS-6872Dissection tool
Single-edged carbon steel bladesFisher Scientific (Intramalls)12-640Razor blade for dissection
Specimen disc, orientingLeica14048142068Specialized vibratome stage for reproducible tilting
SpoonulaFisherSci14-375-10Dissection tool
Super GlueNewegg15187Used for glueing tissue to vibratome stage
Vannas Spring ScissorsFine Science Tools91500-09Dissection tool
Electrophysiology
A1R Upright Confocal MicroscopeNikon InstrumentsElectrophysiology and imaging microscope, can be any microscope compatible with electrophysiology
Electrode Borosilicate glass w/ Filament OD 1.5mm, ID 1.1mm, 10 cm longSutter InstrumentBF150-110-10Patch clamping pipette glass
Electrode Filler MicroFilWPICMF20GPatch electrode pipette filler
In-line solution heaterWarner Instruments (GSAdvantage)SH-27BSlice perfusion system heater
Multi-Micromanipulator SystemsSutter IntrumentsMPC-200 with MP285Micromanipulators for patch clamp and stimulation electrode placement
P-1000 horizontal pipette puller for glass micropipettesSutter instrumentsFG-P1000Patch clamp pipetter puller
Patch-clamp amplifier and SoftwareHEKAEPC-10 / Patchmaster NextCan be any amplifier/software
Recording ChamberWarner InstrumentsRC26GSlice "bath" during recording
Recording Chamber HarpWarner Instruments640253Stablizes slice during electrophysiology recording
Slice Incubation ChamberCustom BuildHeated, oxygenated holding chamber for slices during recovery after slicing
Stimulus isolation unitA.M.P.I.Iso-FlexStimulus isolation unit for electrophysiology
Syringe 60CCFischer Scientific (Intramalls)14-820-11Electrophysiology perfusion fluid handling
Temperature controllerWarner Instruments (GSAdvantage)TC-324CSlice perfusion system temperature controller
Tubing 1/8 OD 1/16 IDFischer Scientific (Intramalls)14-171-129Electrophysiology perfusion fluid handling
Tugsten concentric bipolar microelectrodeWPITM33CCINSStimulating electrode for electrophysiology
Histology
24 well PlateFisher Scientific (Intramalls)12-556006Histology slice collection and immunostaining
Alexa Fluor 488 StreptavidinJackson Immuno labs016-540-084Secondary antibody for biocytin visualization
Corning Orbital ShakerSigmaCLS6780FPShaker for immunohistochemistry agitation
Cresyl Violet AcetateSigma Aldrich (Intramalls)C5042-10GCellular stain for histology
Disposable Microtome BladesFisher Scientific22-210-052Sliding microtome blade
Filter-syringe Nalgene 4mm Cellulose Acetate 0.2umFisher Scientific (Intramalls)09-740-34ASyringe filter for filling recording pipettes with internal solution
Fluoromount-G Slide Mounting MediumFisher ScientificOB100-01Immunohistochemistry fluorescence mounting medium
glass slide staining dish with rackFisher Scientific (Intramalls)08-812Cresyl Violet staining chamber
Microm HM450 Sliding MicrotomeThermoFisher910020Freezing microtome for histology
Microscope Cover Glasses: Rectangles 50mm X 24mmFisher Scientific (Intramalls)12-543DHistochemistry slide cover glass
Permount mounting mediumFisher ScientificSP15-100Cresyl violet section mounting medium
Superfrost SlidesFisher Scientific22-034980Histology slides

Riferimenti

  1. Campbell, J. P., Henson, M. M. Olivocochlear neurons in the brainstem of the mouse. Hearing Research. 35 (2-3), 271-274 (1988).
  2. Grothe, B., Sanes, D. H. Synaptic inhibition influences t....

Ristampe e Autorizzazioni

Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE

Richiedi Autorizzazione

Esplora altri articoli

NeuroscienzeNumero 162neuroni olivocochleari medialielettrofisiologia a fette in vitrointegrazione sinapticanervo uditivotronco uditivonucleo cocleareneurotrasmissione inibitoria

This article has been published

Video Coming Soon

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati