Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.

W tym Artykule

  • Podsumowanie
  • Streszczenie
  • Wprowadzenie
  • Protokół
  • Wyniki
  • Dyskusje
  • Ujawnienia
  • Podziękowania
  • Materiały
  • Odniesienia
  • Przedruki i uprawnienia

Podsumowanie

We describe a xenograft mouse model of breast cancer brain metastasis generated via tail-vein injection of an endogenously HER2-amplified inflammatory breast cancer cell line.

Streszczenie

Metastatic spread to the brain is a common and devastating manifestation of many types of cancer. In the United States alone, about 200,000 patients are diagnosed with brain metastases each year. Significant progress has been made in improving survival outcomes for patients with primary breast cancer and systemic malignancies; however, the dismal prognosis for patients with clinical brain metastases highlights the urgent need to develop novel therapeutic agents and strategies against this deadly disease. The lack of suitable experimental models has been one of the major hurdles impeding advancement of our understanding of brain metastasis biology and treatment. Herein, we describe a xenograft mouse model of brain metastasis generated via tail-vein injection of an endogenously HER2-amplified cell line derived from inflammatory breast cancer (IBC), a rare and aggressive form of breast cancer. Cells were labeled with firefly luciferase and green fluorescence protein to monitor brain metastasis, and quantified metastatic burden by bioluminescence imaging, fluorescent stereomicroscopy, and histologic evaluation. Mice robustly and consistently develop brain metastases, allowing investigation of key mediators in the metastatic process and the development of preclinical testing of new treatment strategies.

Wprowadzenie

Brain metastasis is a common and deadly complication of systemic malignancies. Most brain metastases originate from primary tumors of the lung, breast or skin, which collectively account for 67-80% of cases1,2. Estimates of the incidence of brain metastasis vary between 100,000 to 240,000 cases, and these numbers may be underestimates because autopsy is rare for patients who died of metastatic cancer3. Patients with brain metastases have a worse prognosis and lower overall survival relative to patients without brain metastases4. Current treatment options for brai....

Protokół

The method described here has been approved by the Institutional Animal Care and Use Committee (IACUC) of the MD Anderson Cancer Center and complies with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals. The schematic workflow, with all steps included, is presented as Figure 1.

1. Cell preparation

NOTE: The MDA-IBC3 (ER-/PR-/HER2+) cell line, generated in Dr. Woodward's lab24, was stably transduced with a luciferase-green fluorescent protein (Luc-GFP) plasmid.

  1. Culture trans....

Wyniki

With the rationale that labeled cells facilitate monitoring and visualization of brain metastasis in preclinical mouse models, we tagged MDA-IBC3 cells with Luc and with GFP to monitor brain metastases and quantify the metastatic burden by using bioluminescence imaging and fluorescent stereomicroscopy. Injection of the labeled MDA-IBC3 cells into the tail veins of immunocompromised SCID/Beige mice resulted in high percentages of mice developing brain metastasis (i.e., 66.7% to 100 %)16,.......

Dyskusje

The protocol includes several critical steps. Cells should be kept on ice for no longer than 1 hour to maintain viability. Alcohol cotton pads should be used to wipe the tails of the mice before injection, with care taken to not wipe too hard or too often to avoid damaging the tail skin. Ensure that no air bubbles are present in the cell suspension, to prevent mice from dying from blood vessel emboli. Maintain the angle of injection at 45° or less to avoid piercing the blood vessel in the tails and insert at least 1.......

Ujawnienia

The authors declare no conflicts of interest.

Podziękowania

We thank Christine F. Wogan, MS, ELS, of MD Anderson’s Division of Radiation Oncology for scientific editing of the manuscript, and Carol M. Johnston from MD Anderson’s Division of Surgery Histology Core for help with hematoxylin and eosin staining. We are thankful to the Veterinary Medicine and Surgery Core at MD Anderson for their support for the animal studies. This work was supported by the following grants: Susan G. Komen Career Catalyst Research grant (CCR16377813 to BGD), American Cancer Society Research Scholar grant (RSG-19–126–01 to BGD), and the State of Texas Rare and Aggressive Breast Cancer Research Program. Also supported in part....

Materiały

NameCompanyCatalog NumberComments
Cell Culture
1000 µL pipette tip filteredGenesee Scientific23430
10 mL Serological PipetsGenesee Scientific12-112
Antibiotic-antimycotic Thermo Fisher Scientific152400621%
Centrifuge tubes 15 mL bulkGenesee Scientific28103 
Corning  500 mL Hams F-12 Medium [+] L-glutamineGIBICO Inc. USAMT10080CV
Countess II Automated Cell Counter (Invitrogen)Thermo Fisher ScientificAMQAX1000
1x DPBSThermo Fisher Scientific21-031-CV
Eppendorf centufuge 5810REppendorf 
Fetal bovine serum (FBS)GIBICO Inc. USA1600004410%
Fisherbrand  Sterile Cell Strainers (40 μm)Thermo Fisher Scientific22-363-547
HydrocortisoneSigma-AldrichH08881 µg/mL
Insulin Thermo Fisher Scientific125850145 µg/mL
Invitrogen Countess Cell Counting Chamber SlidesThermo Fisher ScientificC10228 
MDA-IBC3 cell linesMD Anderson Cancer CenterGenerated by Dr. Woodward's lab24
Luciferase–green fluorescent protein (Luc–GFP) plasmidSystem BiosciencesBLIV713PA-1
microtubes clear sterile 1.7 mLGenesee Scientific24282S
Olympus 10 µL Reach Barrier Tip, Low Binding, Racked, SterileGenesee Scientific23-401C 
TC Treated Flasks (T75), 250mL, VentGenesee Scientific25-209
Trypan Blue Stain (0.4%) for use with the Countess Automated Cell CounterThermo Fisher ScientificT10282
Trypsin-EDTA (0.25%), phenol redThermo Fisher Scientific25200114
Tail vein injection
C.B-17/IcrHsd-Prkdc scid Lyst bg-J - SCID/BeigeEnvigoSCID/beige mice
BD Insulin Syringe with the BD Ultra-Fine Needle 0.5mL 30Gx1/2" (12.7mm)BD328466
Plas Labs  Broome-Style Rodent RestrainersPlas Labs 551BSRR01-288-32AOrder fromThermo Fisher Scientific
Volu SolSupplier Diversity Partner Ethanol 95% SDA (190 Proof)Thermo Fisher Scientific5042087270 % used
Imaging
BD Lo-Dose  U-100 Insulin SyringesBD329461
Disposable PES Filter Units 0.45 µmFisherbrandFB12566501filter system to sterilize the D-luciferin
D-LuciferinBiosynthL8220-1gstock concentration = 47.6 mM (15.15 mg/mL); use concentration = 1.515 mg/mL
1.7 mL microtube amberGenesee Scientific24-282AM
IsofluranePatterson VeterinaryNDC-14043-704-06Liquid anesthetic for use in anesthetic vaporizer
IVIS 200 PerkinElmermachine for luciferase imaging, up to 5 mice imaging at the same time, with anesthesia machine
Plastic Containers with Lids Fisherbrand02-544-127
Tissue CassettesThermo Scientific1000957
Webcol Alcohol Prep Covidien6818
Stereomicroscope Imaging
Stereomicroscope AZ100 Nikonmodel AZ-STGEsoftware NIS-ELEMENT
Formalin 10%Fisher ChemicalSF100-4
TC treated dishes 100x20 mmGenesee Scientific25202

Odniesienia

  1. Achrol, A. S., et al. Brain metastases. Nature Reviews Disease Primers. 5 (1), 5 (2019).
  2. Nayak, L., Lee, E. Q., Wen, P. Y. Epidemiology of brain metastases. Current Oncology Report. 14 (1), 48-54 (2012).
  3. Lowery, F. J., Yu, D.

Przedruki i uprawnienia

Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE

Zapytaj o uprawnienia

Przeglądaj więcej artyków

Brain MetastasisInflammatory Breast CancerTail Vein InjectionMouse ModelGFP ImagingBrain HarvestingStereo MicroscopyFluorescent ImagingBrain Tumor Quantification

This article has been published

Video Coming Soon

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone