Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Monitoring intracranial pressure in rodent models of nontraumatic intraventricular hemorrhage is not common in the current literature. Herein, we demonstrate a technique for measuring intracranial pressure, mean arterial pressure, and cerebral perfusion pressure during intraventricular hemorrhage in a rat animal model.
Survivors of intraventricular hemorrhage are often left with significant long-term memory impairment; thus, research utilizing intraventricular hemorrhage animal models is essential. In this study, we sought out ways to measure intracranial pressure, mean arterial pressure, and cerebral perfusion pressure during nontraumatic intraventricular hemorrhage in rats. The experimental design included three Sprague Dawley groups: sham, standard 200 µl intraventricular hemorrhage, and vehicle control groups. By introducing an intraparenchymal fiberoptic pressure sensor, precise intracranial pressure measurements were obtained in all groups. Cerebral perfusion pressures were calculated with the knowledge of intracranial pressure and mean arterial pressure values. As expected, the intraventricular hemorrhage and vehicle control groups both experienced a rise in the intracranial pressure and subsequent decline in cerebral perfusion pressure during intraventricular injection of autologous blood and artificial cerebrospinal fluid, respectively. The addition of an intraparenchymal fiberoptic pressure sensor is beneficial in monitoring precise intracranial pressure changes.
Intraventricular hemorrhage (IVH), a type of intracranial hemorrhage (ICH), is a devastating disease that carries significant mortality and morbidity. IVH is characterized as the accumulation of blood products inside the intracranial ventricles. Isolated IVH in uncommon and typically occurs in adults1. It may be associated with hypertensive hemorrhage, ruptured intracranial aneurysm or another vascular malformation, tumors, or trauma1. IVH leads to secondary brain injury as well as the development of hydrocephalus2. Survivors of IVH are often left with significant functional, memory, and cognitive impairments following their injury. These long-term cognitive and memory deficits are reported in as high as 44% of survivors of ICH3. In subarachnoid hemorrhage (SAH), another type of ICH, it is well known that approximately half of the survivors will have memory deficits, and for those who have IVH in addition to SAH, outcomes tend to be significantly worse4,5,6.
Underlying mechanisms of memory dysfunction following IVH remain to be elucidated. In vivo research utilizing nontraumatic IVH animal models with functional and memory dysfunction is essential in order to discover potential therapeutic targets for such patients. Animal models with more severe memory and functional dysfunction following IVH would be the best to study these changes. The senior author's lab has also been investigating specifically the role of high intracranial pressure (ICP) in the development of memory deficits in IVH rat models. Hence, methods to precisely measure ICPs during IVH were important to investigate. Herein, we report on methods of precisely measuring ICPs in an IVH rat model. Although ICP monitoring has previously been used in traumatic ICH as well as subarachnoid hemorrhage animal models, ICP monitoring in spontaneous IVH rodent models is not as commonly reported in the literature7,8. Hence, the experimental design presented herein included three groups of Sprague Dawley rats: sham, standard 200 µl intraventricular hemorrhage, and vehicle control. For IVH group, an autologous intraventricular blood injection model was used. For vehicle control animals, intraventricular injection of sterile Lactated Ringer's solution was used. ICPs, mean arterial pressures (MAPs), and cerebral perfusion pressures (CPPs) were recorded intraoperatively, and results are reported herein.
All research methods and animal care/maintenance were performed in compliance with the institutional guidelines at the University of California, Davis. The Institutional Animal Care and Use Committee (IACUC) of the University of California, Davis, approved all animal use protocols and experimental procedures (IACUC protocol #21874).
1. Animal housing
2. Anesthesia and pre-operative procedures
3. Surgery protocol
4. Postoperative management
Intracranial, mean arterial, and cerebral perfusion pressures
Both ICPs and MAPs were monitored intraoperatively in all animals (Figure 1). Rats were of 8-10 months old with a mean weight of 495 ± 17 g. Real-time ICP graphs were also collected (Figure 2). Excluding the sham group, ICPs increased significantly during intraventricular injection in IVH as well as vehicle control groups (Figure 3). I...
This study investigated mechanisms to measure ICPs, MAPs, and CPPs in a nontraumatic IVH rat animal model. The results were recorded from the following groups: sham, VH 200 µL, and vehicle control (artificial cerebrospinal fluid intraventricular injection) animals. This experimental design was chosen to investigate how ICPs can be monitored during IVH injection as we hypothesized that the spike in ICPs may contribute to the more significant secondary brain injury and thus memory deficit in IVH animal models. Therefo...
All authors report no conflict of interest.
This work was funded by the NINDS grant: K08NS105914
Name | Company | Catalog Number | Comments |
0.25% bupivacaine | Hospira, Inc. | 409115901 | |
1 mL syringe | Covetrus | 60734 | |
10% providine iodine solution | Aplicare | MSD093947 | |
20 mL syringe | Covidien | 8881520657 | |
22 G needles | Becton Dickinson | 305155 | |
28 G intraventricular needles | P technologies | 8IC313ISPCXC | C313I/SPC 28-Gneedles to fit 22-G guide cannula with 6 mm projection |
3-0 silk suture | Henry Schein, Inc. | SP116 | |
3-way-stopcock | Merti Medical Systems | M3SNC | |
4% paraformaldehyde | Fisher Chemical | 30525-89-4 | |
AnyMaze software | Any-Maze behavioral tracking software | Stoelting CO, USA | |
Artificial ointment | Covetrus | 48272 | |
Blood collection vials with EDTA | Becton Dickinson | 367856 | |
Bone wax | CP Medical, Inc. | CPB31A | |
Carprofen | Zoetis, Inc. | 54771-8507-1 | |
Centrifuge | Beckman | BE-GS6R | Model GS-6R |
Cotton tip applicators | Covetrus | 71214 | |
Drill | Dremel | 1600A011JA | |
Fiberoptic pressure sensors with readout units | Opsens Medical | OPP-M200-X-80SC- 2.0PTFE-XN-100PIT-P1 and LIS-P1-N-62SC | Opp-M200 packaged pressure sensors with LifeSens system |
Forceps | 11923-13, 11064-07 | ||
Gauze | Covetrus | 71043 | |
Guillotine | World Precision Instruments | 51330 | |
Heating pad with rectal thermometer | CWE, Inc. | 08-13000 ,08-13014 | TC1000 Temperature controller |
Hemostats | 13013-14, 13008-12 | ||
Isoflurane | Covetrus | 29405 | |
Lactated ringers | Baxter Healthcare Corp. | Y345583 | |
Laryngoscope | American Diagnostic Corporation | 4080 | |
Metal clip | Fine Scientic Tools | 18056-14 | |
Micro scissors | Fine Scientic Tools | 15007-08 | |
Microscope | Leica | model L2 | |
Needle driver | 12003-15 | ||
Polyethylene tubing | Thermo Fisher Scientific | 14-170-12B | PE-50 tubing |
Rats | Envigo | Sprague Dawley rats 8–10 months old | |
Scalpel | 10010-00 | ||
Scissors | 14090-11 | ||
Stereotaxic instrument | Kopf instruments | Model 940 with ear bars | |
Syringe pump | KD Scientific | 780100 | Model 100 series |
Tuohy Borst | Abbott | 23242 | |
Ventilator | Harvard rodent ventilator | 55-0000 | Model 683 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone