Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
Here, we present a protocol to utilize the latest version of the US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool. This protocol demonstrates the application of the online tool to rapidly analyze protein conservation and provide customizable and easily interpretable predictions of chemical susceptibility across species.
The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool is a fast, freely available, online screening application that allows researchers and regulators to extrapolate toxicity information across species. For biological targets in model systems such as human cells, mice, rats, and zebrafish, toxicity data are available for a variety of chemicals. Through the evaluation of protein target conservation, this tool can be used to extrapolate data generated from such model systems to thousands of other species lacking toxicity data, yielding predictions of relative intrinsic chemical susceptibility. The latest releases of the tool (versions 2.0-6.1) have incorporated new features that allow for the rapid synthesis, interpretation, and use of the data for publication plus presentation-quality graphics.
Among these features are customizable data visualizations and a comprehensive summary report designed to summarize SeqAPASS data for ease of interpretation. This paper describes the protocol to guide users through submitting jobs, navigating the various levels of protein sequence comparisons, and interpreting and displaying the resulting data. New features of SeqAPASS v2.0-6.0 are highlighted. Furthermore, two use-cases focused on transthyretin and opioid receptor protein conservation using this tool are described. Finally, SeqAPASS' strengths and limitations are discussed to define the domain of applicability for the tool and highlight different applications for cross-species extrapolation.
Traditionally, the field of toxicology has relied heavily on the use of whole-animal testing to provide the data necessary for chemical safety evaluations. Such methods are typically costly and resource-intensive. However, due to the large number of chemicals currently used and the rapid pace at which new chemicals are being developed, globally there is a recognized need for more efficient methods of chemical screening1,2. This need and the resulting paradigm shift away from animal testing has led to the development of many new approach methods, including high-throughput screening assays, high-throughput transcriptomics, next-generation sequencing, and computational modeling, which are promising alternative testing strategies3,4.
Evaluating chemical safety across the diversity of species potentially impacted by chemical exposures has been an enduring challenge, not only with traditional toxicity testing but also with new approach methods. Advances in comparative and predictive toxicology have provided frameworks for understanding the relative sensitivity of different species, and technological advances in computational methods continue to increase the applicability of these methods. Several strategies have been discussed over the last decade that leverage existing gene and protein sequence databases, along with knowledge of specific chemical molecular targets, to support predictive approaches for cross-species extrapolation and enhance chemical safety evaluations beyond the typical model organisms5,6,7,8.
To advance the science into action, build upon these foundational studies in predictive toxicology, prioritize chemical testing efforts, and support decision-making, the US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was created. This tool is a public and freely available web-based application that uses public repositories of constantly expanding protein sequence information to predict chemical susceptibility across the diversity of species9. Based on the principle that a species' relative intrinsic susceptibility to a particular chemical can be determined by evaluating theconservation of the known protein targets of that chemical, this tool rapidly compares protein amino acid sequences from a species with known sensitivity to all species with existing protein sequence data. This evaluation is completed through three levels of analysis, including (1) primary amino acid sequence, (2) functional domain, and (3) critical amino acid residue comparisons, each requiring more in-depth knowledge of the chemical-protein interaction and providing greater taxonomic resolution in the susceptibility prediction. A major strength of SeqAPASS is that users can customize and refine their evaluation by adding additional lines of evidence toward target conservation based on how much information is available regarding the chemical-protein or protein-protein interaction of interest.
The first version was released in 2016, which allowed users to evaluate primary amino acid sequences and functional domains in a streamlined manner to predict chemical susceptibility and contained minimal data visualization capabilities (Table 1). Individual amino acid differences have been shown to be important determinants of cross-species differences in chemical-protein interactions, which can affect species' chemical susceptibility10,11,12. Therefore, subsequent versions were developed to consider the critical amino acids that are important for direct chemical interaction13. Responding to stakeholder and user feedback, this tool has undergone annual version releases with additional new features designed to meet the needs of both researchers and regulatory communities for addressing challenges in cross-species extrapolation (Table 1). The launch of SeqAPASS version 5.0 in 2020 brought forth user-centered features that incorporate data visualization and data synthesis options, external links, summary table and report options, and graphical features. Overall, the new attributes and capabilities of this version improved data synthesis, interoperability amongst external databases, and the ease of data interpretation for predictions of cross-species susceptibility.
1. Getting started
NOTE: The protocol presented here is focused on tool utility and key features. Detailed descriptions of methods, features, and components can be found on the website in a comprehensive User Guide (Table 1).
Table 1: Evolution of the SeqAPASS tool. A list of features and updates added to the SeqAPASS tool from its initial deployment. Abbreviations: SeqAPASS = Sequence Alignment to Predict Across Species Susceptibility; ECOTOX = ECOTOXicology knowledgebase. Please click here to download this Table.
Figure 1: SeqAPASS problem formulation: schematic diagram of the preliminary information necessary for a successful analysis. Abbreviations: SeqAPASS = Sequence Alignment to Predict Across Species Susceptibility; LBD = ligand-binding domain. Please click here to view a larger version of this figure.
Figure 2: SeqAPASS interoperability across databases. Schematic diagram of external tools, databases, and resources integrated into SeqAPASS. Abbreviations: SeqAPASS = Sequence Alignment to Predict Across Species Susceptibility; AOP = adverse outcome pathway; NCBI = National Center for Biotechnology Information; ECOTOX = ECOTOXicology knowledgebase. Please click here to view a larger version of this figure.
Table 2: Links, resources, and tools integrated into the SeqAPASS tool. A list of the various data sources, links, and resources leveraged into the SeqAPASS tool. Abbreviation: SeqAPASS = Sequence Alignment to Predict Across Species Susceptibility. Please click here to download this Table.
2. Developing and running a SeqAPASS query: Level 1
NOTE: In a Level 1 analysis, the entire primary amino acid sequence of a query protein is compared to the primary amino acid sequences of all species with available sequence information. This tool uses algorithms to mine, collect, and compile publicly available data to rapidly align and compare amino acid sequences across species. The backend stores information from National Center for Biotechnology Information (NCBI) databases and strategically makes use of the standalone versions of the Protein Basic Local Alignment Search Tool (BLASTp)54 and the Constraint-based Multiple Alignment Tool (COBALT)55.
3. Developing and running a SeqAPASS query: Level 2
NOTE: As the entire protein sequence is not directly involved in a chemical interaction, a Level 2 analysis compares only the amino acid sequence of the functional domain to make susceptibility predictions at lower taxonomic ranks (e.g., class, order, family).
4. Accessing and understanding the data: SeqAPASS Level 1 and Level 2
5. Manipulating data settings: SeqAPASS Level 1 and Level 2
NOTE: In both Level 1 and Level 2 analyses, it is assumed that the greater the protein similarity, the greater the likelihood that a chemical will interact with the protein in a similar manner to the query species/protein, making them susceptible to potential impacts of chemicals with this molecular target. Due to the similarity of these data, steps for understanding Level 1 and 2 data are outlined together in a single protocol.
6. Visualizing the data: SeqAPASS Level 1 and Level 2
7. Developing and running a SeqAPASS analysis: Level 3
NOTE: A Level 3 analysis assesses user-identified amino acid residues within the query protein and rapidly compares the conservation of these residues across species. Species in which these residues are conserved are assumed to be more likely to interact with a chemical in a similar manner to the template species/protein. As Level 3 focuses on individual amino acids, an analysis can only be performed when detailed knowledge of the amino acid residues critical to the chemical-protein or protein-protein interaction is available.
8. Identify critical amino acid residues using identified literature
9. Visualizing Level 3 SeqAPASS data
NOTE: As in previous Levels, Primary and Full reports are available. In addition to data identical to the data in Level 1 and 2, the Primary Report displays amino acid positions, abbreviations, and a yes/no (Y/N) similar susceptibility as the template prediction. Similarly, the Full Report contains information on amino acid side chain classification and molecular weight.
10. Interpretation of SeqAPASS Results: Lines of evidence for protein conservation
NOTE: For ease of interpretation, this tool includes a Decision Summary Report (DS Report) designed to integrate data across Levels. The DS Report contains the results (i.e., data tables and/or visualizations) that the user has selected and allows for the quick evaluation of susceptibility predictions across multiple Levels for multiple species simultaneously.
To demonstrate the application of the SeqAPASS tool and highlight new features, two case studies are described representing instances in which protein conservation predicts that there are differences in chemical susceptibility across species (human transthyretin) and that there are no differences (µ opioid receptor [MOR]). The first of these examples addresses protein sequence/structural comparisons to predict the domain of applicability for adverse outcome pathways (AOPs, see Table 2 for definition...
There is widespread recognition that it is not feasible to empirically test enough species to capture the genomic, phenotypic, physiological, and behavioral diversity of living organisms that may be exposed to chemicals of toxicological interest. The goal of SeqAPASS is to maximize the use of existing and continuously expanding protein sequence and structural data to aid and inform the extrapolation of chemical toxicity data/knowledge from tested organisms to hundreds or thousands of other species through molecular-level...
The authors have no conflicts of interest to disclose.
The authors thank Dr. Daniel L. Villeneuve (U.S. EPA, Center for Computational Toxicology and Exposure) and Dr. Jon A. Doering (Department of Environmental Sciences, Louisiana State University) for providing comments on an earlier draft of the manuscript. This work was supported by the U.S. Environmental Protection Agency. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency, nor does the mention of trade names or commercial products indicate endorsement by the federal government.
Name | Company | Catalog Number | Comments |
Spreadsheet program | N/A | N/A | Any program that can be used to view and work with csv files (e.g. Microsoft Excel, OpenOffice Calc, Google Docs) can be used to access data export files. |
Basic computing setup and internet access | N/A | N/A | SeqAPASS is a free, online tool that can be easily used via an internet connection. No software downloads are required. |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone