Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol describes a method for eukaryotic polysome purification from intact soybean nodules. After sequencing, standard pipelines for gene expression analysis can be used to identify differentially expressed genes at the transcriptome and translatome levels.
The aim of this protocol is to provide a strategy for studying the eukaryotic translatome of the soybean (Glycine max) symbiotic nodule. This paper describes methods optimized to isolate plant-derived polyribosomes and their associated mRNAs to be analyzed using RNA-sequencing. First, cytoplasmic lysates are obtained through homogenization in polysome- and RNA-preserving conditions from whole, frozen soybean nodules. Then, lysates are cleared by low-speed centrifugation, and 15% of the supernatant is used for total RNA (TOTAL) isolation. The remaining cleared lysate is used to isolate polysomes by ultracentrifugation through a two-layer sucrose cushion (12% and 33.5%). Polysome-associated mRNA (PAR) is purified from polysomal pellets after resuspension. Both TOTAL and PAR are evaluated by highly sensitive capillary electrophoresis to meet the quality standards of sequencing libraries for RNA-seq. As an example of a downstream application, after sequencing, standard pipelines for gene expression analysis can be used to obtain differentially expressed genes at the transcriptome and translatome levels. In summary, this method, in combination with RNA-seq, allows the study of the translational regulation of eukaryotic mRNAs in a complex tissue such as the symbiotic nodule.
Leguminous plants, such as soybean (Glycine max), can establish symbiosis with specific soil bacteria called rhizobia. This mutualistic relationship elicits the formation of novel organs, the symbiotic nodules, on the plant roots. The nodules are the plant organs hosting the bacteria and consist of host cells whose cytoplasm is colonized with a specialized form of rhizobia called bacteroids. These bacteroids catalyze the reduction of atmospheric nitrogen (N2) into ammonia, which is transferred to the plant in return for carbohydrates1,2.
Although this nitrogen-fixing symbiosis is one of the most well-studied plant-microbe symbioses, many aspects remain to be better understood, such as how plants subjected to different abiotic stress conditions modulate their interaction with their symbiotic partner and how this affects nodule metabolism. These processes could be better understood by analyzing the nodule translatome (i.e., the subset of messenger RNAs [mRNAs] actively translated). Polyribosomes or polysomes are complexes of multiple ribosomes associated with mRNA, commonly used to study translation3. The polysome profiling method consists of the analysis of the mRNAs associated with polysomes and has been successfully used to study the posttranscriptional mechanisms controlling gene expression that occurs in diverse biological processes4,5.
Historically, genome expression analysis has focused primarily on determining mRNA abundance6,7,8,9. However, there is a lack of correlation between transcript and protein levels due to the different stages of posttranscriptional regulation of gene expression, particularly translation10,11,12. Moreover, no dependence has been observed between the changes at the level of the transcriptome and those that occur at the level of the translatome13. The direct analysis of the set of mRNAs that are being translated allows a more accurate and complete measurement of the cell gene expression (whose endpoint is protein abundance) than the one obtained when only mRNA levels are analyzed14,15,16.
This protocol describes how plant-derived polysomes are purified from intact soybean nodules by differential centrifugation through a two-layer sucrose cushion (Figure 1). However, since bacteroid-derived ribosomes are also present in the nodules, a mix of ribosomes and RNA species are purified, even though the eukaryotic ones represent the main fraction (90%-95%). The subsequent RNA isolation, quantification, and quality control are also described (Figure 1). This protocol, in combination with RNA-seq, should provide experimental results on the translational regulation of eukaryotic mRNAs in a complex tissue such as the symbiotic nodule.
Figure 1: Schematic overview of the proposed methodology for eukaryotic polysome purification from symbiotic nodules. The scheme gives an overview of the steps followed in the protocol from (1) plant growth and (2) nodule harvest to (3) preparation of the cytosolic extracts, (3) obtaining TOTAL samples and (4) PAR samples, and (5) RNA extraction and quality control. Abbreviations: PEB = polysome extraction buffer; RB = resuspension buffer; TOTAL = total RNA; PAR = polysome-associated mRNA. Please click here to view a larger version of this figure.
1. Plant growth and rhizobia inoculation
2. Water deficit treatment (optional)
NOTE: This protocol outlines the water deficit treatment of the soybean plants. This part can be changed or omitted entirely depending on the experimental question at hand.
3. Nodule harvest
4. Preparation of cytosolic extracts
NOTE: The final aim of this protocol is to obtain high-quality total RNA (TOTAL) and polysome-associated RNA (PAR). Therefore, work under conditions that prevent RNA degradation, always keeping the samples at 4 °C and using RNase-free laboratory equipment and solutions. Unless specified, all the solutions are prepared with sterile ultrapure water.
5. Preparation of sucrose cushions
NOTE: This protocol uses a two-layer sucrose cushion (12% and 33.5%) in 13.2 mL ultracentrifuge tubes (see the Table of Materials). All solutions are prepared with sterile ultrapure water.
6. Polysome purification
7. RNA extraction and quality control
NOTE: This step is performed for TOTAL (step 4.8) and PAR samples (step 6.4).
8. RNA precipitation
9. Standard pipeline for gene expression analysis
The quantity and quality assessment of the TOTAL and PAR fractions purified with the abovementioned procedure is key to determining its success, since for most downstream applications, such as RNA sequencing, high-quality samples are fundamental for library preparation and sequencing. Moreover, the integrity of the RNA molecules allows the capture of a snapshot of the gene expression profile at the moment of sample collection18. In this context, an RNA integrity number (RIN) is obtained when perfo...
Studying gene expression regulation at the translational level is critical to better comprehend different biological processes since the endpoint of cell gene expression is protein abundance13,14. This can be assessed by analyzing the translatome of the tissue or organism of interest for which the polysomal fraction should be purified and its associated mRNAs analyzed3,4,34
The authors have no conflicts of interest.
This research was funded by CSIC I+D 2020 grant No. 282, FVF 2017 grant No. 210, and PEDECIBA (María Martha Sainz).
Name | Company | Catalog Number | Comments |
Plant growth and rhizobia inoculation | |||
Orbital shaker | Daihan Scientific | Model SHO-1D | |
YEM-medium | Amresco | J850 (yeast extract) 0122 (mannitol) | |
Water deficit treatment | |||
KNO3 | Merck | 221295 | |
Porometer | Decagon Device | Model SC-1 | |
Scalpel | |||
Preparation of cytosolic extracts | |||
Brij L23 | Sigma-Aldrich | P1254 | |
Centrifuge | Sigma | Model 2K15 | |
Chloranphenicol | Sigma-Aldrich | C0378 | |
Cycloheximide | Sigma-Aldrich | C7698 | |
DOC | Sigma-Aldrich | 30970 | |
DTT | Sigma-Aldrich | D9779 | |
EGTA | Sigma-Aldrich | E3889 | |
Igepal CA 360 | Sigma-Aldrich | I8896 | |
KCl | Merck | 1.04936 | |
MgCl2 | Sigma-Aldrich | M8266 | |
Plastic tissue grinder | Fisher Scientific | 12649595 | |
PMSF | Sigma-Aldrich | P7626 | |
PTE | Sigma-Aldrich | P2393 | |
Tris | Invitrogen | 15504-020 | |
Triton X-100 | Sigma-Aldrich | T8787 | |
Tween 20 | Sigma-Aldrich | P1379 | |
Weighing dish | Deltalab | 1911103 | |
Preparation of sucrose cushions | |||
Sucrose | Invitrogen | 15503022 | |
SW 40 Ti rotor | Beckman-Coulter | ||
Ultracentrifuge | Beckman-Coulter | Optima L-100K | |
Ultracentrifuge tubes | Beckman-Coulter | 344059 | 13.2 mL tubes |
RNA extraction and quality control | |||
Agarose | Thermo scientific | R0492 | |
Bioanalyzer | Agilent | Model 2100. Eukaryote total RNA nano assay | |
Chloroform | DI | 41191 | |
Ethanol | Dorwil | UN1170 | |
Isopropanol | Mallinckrodt | 3032-06 | |
Glycogen | Sigma | 10814-010 | |
TRIzol LS | Ambion | 102960028 | |
Miscellaneous | |||
Falcon tubes 15 mL | Biologix | 10-0152 | |
Filter tips 10 µL | BioPointe Scientific | 321-4050 | |
Filter tips 1000 µL | BioPointe Scientific | 361-1050 | |
Filter tips 20 µL | BioPointe Scientific | 341-4050 | |
Filter tips 200 µL | Tarsons | 528104 | |
Microcentrifuge tubes 1.5 mL | Tarsons | 500010-N | |
Microcentrifuge tubes 2.0 mL | Tarsons | 500020-N | |
Sequencing company | Macrogen | ||
Sterile 250 mL flask | Marienfeld | 4110207 |
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone