Aby wyświetlić tę treść, wymagana jest subskrypcja JoVE. Zaloguj się lub rozpocznij bezpłatny okres próbny.
Method Article
This protocol details the enrichment of native mycobacterial extracellular vesicles (mEVs) from axenic cultures of Mycobacterium smegmatis (Msm) and how mCherry (a red fluorescent reporter)-containing recombinant MsmEVs can be designed and enriched. Lastly, it verifies the novel approach with the enrichment of MsmEVs containing the EsxA protein of Mycobacterium tuberculosis.
Most bacteria, including mycobacteria, generate extracellular vesicles (EVs). Since bacterial EVs (bEVs) contain a subset of cellular components, including metabolites, lipids, proteins, and nucleic acids, several groups have evaluated either the native or recombinant versions of bEVs for their protective potency as subunit vaccine candidates. Unlike native EVs, recombinant EVs are molecularly engineered to contain one or more immunogens of interest. Over the last decade, different groups have explored diverse approaches for generating recombinant bEVs. However, here, we report the design, construction, and enrichment of recombinant mycobacterial EVs (mEVs) in mycobacteria. Towards that, we use Mycobacterium smegmatis (Msm), an avirulent soil mycobacterium as the model system. We first describe the generation and enrichment of native EVs of Msm. Then, we describe the design and construction of recombinant mEVs that contain either mCherry, a red fluorescent reporter protein, or EsxA (Esat-6), a prominent immunogen of Mycobacterium tuberculosis. We achieve this by separately fusing mCherry and EsxA N-termini with the C-terminus of a small Msm protein Cfp-29. Cfp-29 is one of the few abundantly present proteins of MsmEVs. The protocol to generate and enrich recombinant mEVs from Msm remains identical to the generation and enrichment of native EVs of Msm.
Despite the development and administration of a wide range of vaccines against infectious diseases, even to this day, ~30% of all human deaths still occur from communicable diseases1. Before the advent of the Tuberculosis (TB) vaccine - Bacillus Calmette Guerin (BCG) - TB was the number one killer (~10,000 to 15,000/100,000 population)2. With the administration of BCG and easy access to first and second-line anti-TB drugs, by 2022, TB-related deaths have dramatically dropped to ~1 million/year by 2022 (i.e., ~15-20/100,000 population1). However, in TB endemic populations of the world, TB-related deaths continue to stand at ~100-550/100,000 population1. While experts recognize several reasons leading to these skewed numbers, BCG-mediated protection not lasting for even the first decade of life appears to be the prominent reason3,4,5,6,7. Consequently, given the renewed 'Sustainable Development Goals' of the UN and the 'End TB Strategy', of WHO, there is a concerted global effort to develop a much superior vaccine alternative to BCG that perhaps provides lifelong protection from TB.
Towards that objective, several groups are currently evaluating modified/recombinant BCG strains, non-pathogenic and attenuated mycobacterial species other than BCG, and subunit candidates8,9,10,11,12,13,14,15,16,17,18. Typically, subunit vaccines are liposomes selectively loaded with few purified (~1-6) full-length or truncated immunogenic proteins of the pathogen. However, because of their spurious folding into non-native conformations and/or random non-functional interactions between the loaded proteins, subunits often lack native and germane epitopes and hence, fail to sufficiently prime the immune system14,19,20.
Consequently, extracellular vesicles (EVs) of bacteria have picked up pace as a promising alternative21,22,23,24,25,26. Typically, bacterial EVs (bEVs) contain a subset of their cellular components, including some portions of nucleic acids, lipids, and hundreds of metabolites and proteins27,28. Unlike liposomes where a few purified proteins are artificially loaded, bEVs contain hundreds of naturally-loaded, natively-folded proteins with a better propensity to prime the immune system, especially without the boost/aid of adjuvants and Toll-like receptor (TLR) agonists27,28,29. It is in this line of research that we and others have explored the utility of mycobacterial EVs as potential subunit boosters to BCG30. Despite concerns that bEVs lack uniform antigen loads, EVs from attenuated Neisseria meningitidis have successfully protected humans against serogroup B meningococcus31,32.
At least theoretically, the best EVs that could boost BCG well are the EVs enriched from pathogenic bacteria. However, enriching EVs generated by pathogenic mycobacterium is expensive, time-consuming, and risky. Additionally, pathogen-generated EVs may be more virulent than protective. Given the potential risks, here, we report a well-tested protocol for the enrichment of EVs generated by axenically grown Msm, an avirulent mycobacterium.
However, despite encoding several pathogen protein orthologs, avirulent mycobacteria lack several vaccine antigens/pathogenic protein epitopes necessary to sufficiently prime the immune system towards protection33. Therefore, we also explored constructing and enriching recombinant EVs of Msm through molecular engineering, such that a significant portion of any pathogenic protein of interest expressed and translated in Msm, must reach its EVs. We hypothesized that one or more of the top 10 abundant proteins of Msm EVs when fused to the protein of interest will aid in such translocation.
While we were beginning to standardize the enrichment of mycobacterial EVs (mEVs) in our laboratory, in 2011, Prados-Rosales et al. first reported the visualization and enrichment of mEVs in vitro30. Later, in 2014, the same group published a modified version of their 2011 method34. In 2015, Lee et al. also reported an independently standardized method for mEV enrichment again from axenic cultures of mycobacteria35. Combining both protocols34,35 and incorporating a few of our modifications after thorough standardization, we describe here a protocol that helps routinely enrich mEVs from axenic cultures of mycobacteria36.
Here, we particularly detail the enrichment of Msm-specific EVs, which is an extension of a published protocol36 for the enrichment of mycobacterial EVs in general. We also detail how to construct recombinant mEVs (R-mEVs) that contain the mCherry protein (as a red fluorescent reporter) and EsxA (Esat-6)37,38,39 a predominant immunogen and a potential subunit vaccinogen of Mycobacterium tuberculosis. The protocol for enriching the R-mEVs remains identical to the one we have described for enriching native EVs from Msm.
1. Growth conditions of Mycobacterium smegmatis, Escherichia coli, and their derivatives
2. Enrichment of Msm mEVs by employing density gradient centrifugation
3. Construction and enrichment of recombinant mEVs.
NOTE: One of the 10 most abundant proteins (identified by mass spectrometry) of Msm EVs is Cfp-2930. Given its small size (29 kDa), simple secondary structure40, localization to the membrane41, and propensity to be secreted into spent media in axenic cultures (e.g., as a culture filtrate protein; secreted by both Msm and Mtb42,43, here, it has been exploited to deliver a red fluorescent reporter and a protein of interest (EsxAMtb) into mEVs. To achieve this,
We use M. smegmatis (Msm) as the model mycobacterium to demonstrate the enrichment of both native and recombinant mEVs (R-mEVs). This schematically summarized mEVs enrichment protocol (Figure 1) also works for the enrichment of R-mEVs of Msm and native EVs of Mtb (with minor modifications as in protocol notes of 1.2). Visualization of the enriched mEVs requires negatively staining them under a transmission electron microscope36 (Figure 2A...
Since developing a novel TB vaccine that is superior to and can replace BCG remains a formidable challenge, as an alternative, several groups are pursuing the discovery of different subunit TB vaccines that can boost BCG's potency and extend its protective duration48,49. Given the increasing attention to bacterial EVs (bEVs) as potential subunits and as natural adjuvants50,51, consistent enrichment of...
All authors declare that this research work was conducted in the absence of any commercial or financial relationships/interests that could be construed as a potential conflict of interest.
The authors sincerely thank Prof. Sarah M. Fortune for kindly sharing M. smegmatis mc2155 stock. They also acknowledge Servier Medical Art (smart.servier.com) for providing some basic elements for Figure 1. They sincerely acknowledge the support of the rest of the lab members for their patient adjustments during the long use of the incubator shakers, centrifuges, and ultracentrifuges for mEV enrichment. They also acknowledge Mr. Surjeet Yadav, the laboratory assistant, for always making sure the necessary glassware and consumables were always available and handy. Lastly, they acknowledge the administrative, the purchase, and the finance teams of THSTI for their constant support and help in the seamless execution of the project.
Name | Company | Catalog Number | Comments |
A2 type Biosafety Cabinet | Thermo Fisher Scientific, USA | 1300 series | |
Bench top Centrifuge | Eppendorf, USA | 5810 R | |
BstB1, HindIII, HpaI | NEB, USA | NEB | |
Cell densitometer | GE Healthcare, USA | Ultraspec 10 | |
Citric Acid | Sigma-Aldrich, Merck, USA | Sigma Aldrich | |
Dibasic Potassium Phosphate | Sigma-Aldrich, Merck, USA | Sigma Aldrich | |
Double Distilled Water | Merck, USA | ~18.2 MW/cm @ 25 oC | |
Electroporation cuvettes | Bio-Rad, USA | 2 mm | |
Electroporator | Bio-Rad, USA | Electroporator | |
EsxA-specific Ab | Abcam, UK | Rabbit polyclonal | |
Ferric Ammonium Citrate | Sigma-Aldrich, Merck, USA | Sigma Aldrich | |
Floor model centrifuge | Thermo Fisher Scientific, USA | Sorvall RC6 plus | |
Glassware | Borosil, INDIA | 1 L Erlenmeyer flasks | |
Glycerol | Sigma-Aldrich, Merck, USA | Sigma Aldrich | |
HEPES and Sodium Chloride | Sigma-Aldrich, Merck, USA | Sigma Aldrich | |
Incubator shakers | Thermo Fisher Scientific, USA | MaxQ 6000 & 8000 | |
L-Asparagine | Sigma-Aldrich, Merck, USA | Sigma Aldrich | |
Luria Bertani Broth and Agar, Miller | Hi Media, INDIA | Hi Media | |
Magnesium Sulfate Heptahydrate | Sigma-Aldrich, Merck, USA | Sigma Aldrich | |
Magnetic stirrer | Tarsons, INDIA | Tarsons | |
mCherry-specific Ab | Abcam, UK | Rabbit monoclonal | |
Microwave | LG, INDIA | MC3286BLT | |
Middlebrook 7H9 Broth | BD, USA | Difco Middlebrook 7H9 Broth | |
Middlebrook ADC enrichment | BD, USA | BBL Middlebrook ADC enrichment | |
Nanodrop | Thermo Fisher Scientific, USA | Spectronic 200 UV-Vis | |
NEB5a | NEB, USA | a derivative of DH5a | |
Optiprep (Iodixanol) | Merck, USA | Available as 60% stock solution (in water) | |
PCR purification kit | Hi Media, INDIA | Hi Media | |
pH Meter | Mettler Toledo, USA | Mettler Toledo | |
Plasmid DNA mini kit | Hi Media, INDIA | Hi Media | |
Plate incubator | Thermo Fisher Scientific, USA | New Series | |
Plasmid pMV261 | Addgene, USA * *The plasmid is no more available in this plasmid bank | Shuttle vector | |
Proof-reading DNA Polymerase | Thermo Fisher Scientific, USA | Phusion DNA Plus Polymerase | |
Q5 Proof-reading DNA Polymerase | NEB, USA | NEB | |
Refrigerated circulating water bath | Thermo Fisher Scientific, USA | R20 | |
Middlebrock 7H11 Agar base | BD, USA | BBL Seven H11 Agar base | |
SOC broth | Hi Media, INDIA | Hi Media | |
Sodium Hydroxide | Sigma-Aldrich, Merck, USA | Sigma Aldrich | |
T4 DNA Ligase | NEB, USA | NEB | |
Tween-80 | Sigma-Aldrich, Merck, USA | Sigma Aldrich | |
Ultracentrifuge | Beckman Coulter, USA | Optima L100K | |
Ultracentrifuge tubes - 14 mL | Beckman Coulter, USA | Polyallomer type – ultra clear type in SW40Ti rotor | |
Ultracentrifuge tubes - 38 mL | Beckman Coulter, USA | Polypropylene type– cloudy type for SW28 rotor | |
Ultrasonics cleaning waterbath sonicator | Thermo Fisher Scientific, USA | Sonicator - bench top model | |
0.22 µm Disposable filters | Thermo Fisher Scientific, USA | Nunc-Nalgene | |
30-kDa Centricon concentrators | Merck, USA | Amicon Ultra centrifugal filters - Millipore | |
3X FLAG antibody | Sigma-Aldrich, Merck, USA | Sigma Aldrich | |
400 mL Centrifuge bottles | Thermo Fisher Scientific, USA | Nunc-Nalgene | |
50 mL Centrifuge tubes | Corning, USA | Sterile, pre-packed | |
Bacteria | |||
Strain | |||
Escherichia coli | NEB, USA | NEB 5-alpha (a derivative of DH5α). | |
Msm expressing cfp29::mCherry | This study | MC2 155 | |
Msm expressing cfp29::esxA | This study | MC2 155 | |
Msm expressing cfp29::esxA::3X FLAG | This study | MC2 155 | |
Mycobacterium smegmatis (Msm) | Prof. Sarah M. Fortune, Harvard Univ, USA | MC2 155 |
An erratum was issued for: Enrichment of Native and Recombinant Extracellular Vesicles of Mycobacteria. The Authors section was updated from:
Praapti Jayaswal1
Mohd Ilyas1
Kuljit Singh1,2
Saurabh Kumar1,3
Lovely Sisodiya1
Sapna Jain1
Rahul Mahlawat1
Nishant Sharma1
Vishal Gupta1
Krishnamohan Atmakuri1
1Bacterial Pathogenesis Laboratory, Infectious Diseases and Immunology Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster
2Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine
3ICAR-Research Complex for Eastern Region
4Public Health Research Institute, Rutgers University
to:
Praapti Jayaswal1
Mohd Ilyas1
Kuljit Singh1,2
Saurabh Kumar1,3
Lovely Sisodiya1
Sapna Jain1
Rahul Mahlawat1
Nishant Sharma1,4
Vishal Gupta1
Krishnamohan Atmakuri1
1Bacterial Pathogenesis Laboratory, Infectious Diseases and Immunology Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster
2Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine
3ICAR-Research Complex for Eastern Region
4Public Health Research Institute, Rutgers University
Zapytaj o uprawnienia na użycie tekstu lub obrazów z tego artykułu JoVE
Zapytaj o uprawnieniaThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone