É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
Aqui é demonstrado um sistema de resolução acústica (AR) e resolução óptica (OR) de microscopia fotoacústica (AR-OR-PAM) capaz de obter imagens de alta resolução em profundidade superficial e baixa resolução de imagens de tecido profundo na mesma amostra in vivo .
A microscopia fotoacústica (PAM) é uma modalidade de imagem invivo de crescimento rápido que combina tanto a óptica como a ultra-sonografia, proporcionando penetração para além do caminho livre médio óptico (~ 1 mm na pele) com alta resolução. Ao combinar o contraste de absorção óptica com a alta resolução espacial do ultra-som em uma única modalidade, esta técnica pode penetrar nos tecidos profundos. Os sistemas de microscopia fotoacústica podem ter uma baixa resolução acústica e uma sonda profundamente ou uma alta resolução óptica e sondagem superficialmente. É desafiador alcançar alta resolução espacial e grande penetração de profundidade com um único sistema. Este trabalho apresenta um sistema AR-OR-PAM capaz de imagens de alta resolução em profundidades rasas e imagens de tecido profundo de baixa resolução da mesma amostra in vivo . Uma resolução lateral de 4 μm com profundidade de imagem de 1,4 mm usando focagem óptica e uma resolução lateral de 45 μm com profundidade de imagem de 7,8 mm usando focagem acústica foram bem sucedidasDemonstrou o uso do sistema combinado. Aqui, a imagem de vasculatura de sangue de animal pequeno in vivo é realizada para demonstrar sua capacidade de imagem biológica.
As modalidades de imagem óptica de alta resolução, como a tomografia de coerência óptica, microscopia confocal e microscopia multiphoton, têm inúmeros benefícios. No entanto, a resolução espacial diminui significativamente à medida que a profundidade da imagem aumenta. Isto é devido à natureza difusa do transporte de luz nos tecidos moles 1 , 2 . A integração de excitação óptica e detecção de ultra-som fornece uma solução para superar o desafio da imagem ótica de alta resolução em tecidos profundos. A microscopia fotoacústica (PAM) é uma modalidade que pode proporcionar imagens mais profundas do que outras modalidades de imagem óptica. Foi aplicado com sucesso em imagens estruturais, funcionais, moleculares e celulares in vivo 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , combinando o forte contraste de absorção óptica com a alta resolução espacial do ultra-som.
No PAM, um pulso laser curto irradia o tecido / amostra. A absorção de luz por cromóforos ( por exemplo, melanina, hemoglobina, água, etc. ) resulta em um aumento de temperatura, o que, por sua vez, resulta na produção de ondas de pressão sob a forma de ondas acústicas (ondas fotoacústicas). As ondas fotoacústicas geradas podem ser detectadas por um transdutor ultra-sônico de banda larga fora do limite do tecido. Utilizando fraca focagem acústica óptica e apertada, a imagem em tecido profundo pode ser alcançada em microscopia fotoacústica de resolução acústica (AR-PAM) 14 , 15 , 16 . Em AR-PAM, uma resolução lateral de 45 μm e uma profundidade de imagem de até 3 mm foram demonstradas 15 . Para resolver capilares únicos (~ 5 μm) acústicamente, são necessários transdutores ultra-sônicos que operam em freqüências centrais de 400 MHz. Em tais freqüências altas, a profundidade de penetração é inferior a 100 μm. O problema causado pela focagem acústica apertada pode ser resolvido usando focagem ótica apertada. A microscopia fotoacústica de resolução óptica (OR-PAM) é capaz de resolver capilares únicos, ou mesmo uma única célula 17 , e uma resolução lateral de 0,5 μm foi alcançada 18 , 19 , 20 , 21 , 22 , 23 , 24 . O uso de um nanojet fotônico pode ajudar a alcançar uma resolução além da resolução de difração limitadaN 25 , 26 . Em OR-PAM, a profundidade de penetração é limitada devido à focagem leve e pode representar uma imagem até ~ 1,2 mm dentro do tecido biológico 23 . Portanto, AR-PAM pode imagem mais profunda, mas com uma resolução menor, e OR-PAM pode imagem com uma resolução muito alta, mas com profundidade de imagem limitada. A velocidade de imagem do sistema AR e OR-PAM depende principalmente da taxa de repetição de pulso da fonte laser 27 .
A combinação de AR-PAM e OR-PAM será de grande benefício para aplicativos que exigem uma imagem de alta resolução e imagem mais profunda. Pouco esforço foi feito para combinar esses sistemas juntos. Normalmente, dois scanners de imagem diferentes são usados para imagens, o que requer que a amostra seja movida entre os dois sistemas, dificultando assim a realização de imagens in vivo . No entanto, a imagem híbrida com AR e OR PAM permite a imagem com resoluções escaláveis aE profundidades. Em uma abordagem, um feixe de fibra óptica é usado para fornecer luz tanto para AR como para OR PAM. Nesta abordagem, são utilizados dois laser separados (um laser de alta energia a 570 nm para o AR e um laser de baixa energia e alta repetição a 532 nm para o OR), o que torna o sistema inconveniente e caro 28 . O comprimento de onda do laser OR-PAM é fixo, e muitos estudos, como a saturação de oxigênio, não são possíveis usando esse sistema combinado. Estudos comparativos entre AR e OR PAM também não são possíveis devido à diferença nos comprimentos de onda do laser entre o AR e o OR. Além disso, AR-PAM usa iluminação de campo brilhante; Portanto, sinais fortes fotoacústicos da superfície da pele limitam a qualidade da imagem. Por este motivo, o sistema não pode ser usado para muitas aplicações de bioimagem. Em outra abordagem para executar AR e OR PAM, o foco óptico e ultra-som é deslocado, o que torna o foco da luz e o foco ultra-sonográfico desalinhados. Assim, a qualidade da imagem não é otimizada 29. Usando esta técnica, o AR-PAM e o OR-PAM podem alcançar apenas resoluções de 139 μm e 21 μm, respectivamente, tornando-o um sistema de baixa resolução. Outra abordagem, que inclui a mudança da fibra óptica e das opticas colimantes, foi relatada para alternar entre AR e OR PAM, tornando o processo de alinhamento difícil 30 . Em todos estes casos, AR-PAM não usou iluminação de campo escuro. O uso da iluminação do campo escuro pode reduzir a geração de sinais fotoacústicos fortes da superfície da pele. Portanto, a imagem de tecido profundo pode ser realizada usando iluminação em forma de anel, pois a sensibilidade de detecção de sinais fotoacústicos profundos será maior que a de iluminação de campo brilhante.
Este trabalho relata um sistema de imagem AR e OR PAM (AR-OR-PAM) comutável, capaz tanto de imagem de alta resolução quanto de imagem de baixa resolução de tecido profundo da mesma amostra, usando o mesmo laser e scanner para ambos os sistemasEms. O desempenho do sistema AR-OR-PAM foi caracterizado pela determinação da resolução espacial e da profundidade da imagem usando experiências fantasmas. A imagem de vasculatura de sangue in vivo foi realizada em uma orelha de rato para demonstrar sua capacidade de imagem biológica.
Todos os experimentos com animais foram realizados de acordo com os regulamentos e diretrizes aprovados do Comitê Institucional de Cuidados e Uso de Animais da Universidade Tecnológica de Nanyang, Cingapura (Número de Protocolo Animal ARF-SBS / NIE-A0263).
1. Sistema AR-OR-PAM ( Figura 1 )
2. Comutação e Alinhamento do Sistema
3. Etapas experimentais
O esquema do sistema AR-OR-PAM é mostrado na Figura 1 . Nesta configuração, todos os componentes foram integrados e montados em uma configuração de gaiola óptica. O uso de um sistema de gaiola torna a cabeça de varredura AR-OR-PAM compacta e facilmente montada, alinhada e integrada em uma única etapa de digitalização.
A varredura de quadriculação contínua bidimensional da cabeça de i...
Em conclusão, foi desenvolvido um sistema AR e OU PAM comutável que pode atingir imagens de alta resolução em profundidades de imagem mais baixas e imagens de baixa resolução em maiores profundidades de imagem. A resolução lateral e a profundidade de imagem do sistema comutável foram determinadas. As vantagens deste sistema PAM comutável incluem: (1) a imagem de alta resolução usando focagem óptica apertada; (2) a imagem profunda do tecido usando focagem acústica; 3) a iluminação do campo escuro para AR-...
Todas as experiências com animais foram realizadas de acordo com as diretrizes e regulamentos aprovados do Comitê Institucional de Cuidados e Uso Animal da Universidade Tecnológica de Nanyang, Cingapura (Número de Protocolo Animal ARF-SBS / NIE-A0263). Os autores não têm interesses financeiros relevantes no manuscrito e nenhum outro potencial conflito de interesse para divulgar.
Os autores gostariam de reconhecer o apoio financeiro de uma subvenção Nível 2 financiada pelo Ministério da Educação em Singapura (ARC2 / 15: M4020238). Os autores também agradecem ao Sr. Chow Wai Hoong Bobby pela ajuda da maquina.
Name | Company | Catalog Number | Comments |
Q-switched Nd:YAG laser | Edgewave | BX80-2-L | Pump laser |
Credo-High Repetition Rate Dye Laser | Spectra physics | CREDO-DYE-N | Dye laser |
Precision Linear Stage | Physik Instrumente | PLS 85 | XY raster scanning stage |
Translation stage | Physik Instrumente | VT 80 | Confocal determine |
Mounted Silicon photodiode | Thorlabs | SM05PD1A | Triggering/Pulse variation |
Motorized continuous Rotational stage | Thorlabs | CR1/M-Z7 | Diverting laser beam |
Mounted Continuously Variable ND Filter | Thorlabs | NDC-50C-4M | Intensity variable |
Fiber Patch Cable | Thorlabs | M29L01 | Multimode fiber |
Microscope objective | Newport | M-10X | Objective |
XY translating mount | Thorlabs | CXY1 | Translating mount |
Plano convex lens | Thorlabs | LA1951 | Collimating lens |
Conical lens | Altechna | APX-2-B254 | Ring shape beam |
Translation stage | Thorlabs | CT1 | Translating stage |
Optical condenser | Home made | ||
Ultrasonic transducer | Olympus-NDT | V214-BB-RM | 50MHz transducer |
Plano concave lens | Thorlabs | LC4573 | Acoustic lens |
Pulser/Receiver | Olympus-NDT | 5073PR | Pulse echo amplifier |
Mounted standard iris | Thorlabs | ID12/M | Beam shaping |
Plano convex lens | Thorlabs | LA4327 | Condenser lens |
Mounted precision pinhole | Thorlabs | P50S | Spatial filtering |
Single mode fiber patch cable | Thorlabs | P1-460B-FC-1 | Single mode fiber |
Fiber coupler | Newport | F-91-C1 | Single mode coupling |
Achromatic doublet lens | Edmund Optics | 32-317 | Achromatic doublet |
Protected silver elliptical mirror | Thorlabs | PFE10-P01 | Mirror |
Right angle kinematic mirror mount | Thorlabs | KCB1 | Mirror mount |
Z-Axis Translation Mount | Thorlabs | SM1Z | z translator |
Lens tube | Thorlabs | SM05L10 | |
UV Fused Silica Right-Angle Prism | Thorlabs | PS615 | Right angle prism |
Rhomboid prism | Edmund Optics | 47-214 | Shear wave |
Dimethylpolysiloxane | Sigma Aldrich | DMPS1M | Silicon oil |
Amplifier | Mini Circuits | ZFL-500LN | Amplifier |
16 bit high speed digitizer | Spectrum | M4i.4420 | Data acquisition card |
Oscilloscope | Agilent Technologies | DS06014A | |
Mice | InVivos Pte.Ltd | ICR | Animal model |
Ultrasound gel | Progress/parker acquasonic gel | PA-GEL-CLEA-5000 | Acoustic coupling |
Water tank | Home made | ||
Translation stage | Homemade | Switching AR-OR | |
Gold nanoparticles | Sigma Aldrich | 742031 | Lateral resolution |
Sterile ocular ointment | Alcon | Duratears | Animal imaging |
1951 USAF resolution test target | Edmund Optics | 38257 | Confocal alignment |
Data acquisition software | National Instrument | Labview | Home made software using Labview |
Image Processing software | Mathworks | Matlab | Home made program using Matlab |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados