A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here a switchable acoustic resolution (AR) and optical resolution (OR) photoacoustic microscopy (AR-OR-PAM) system capable of both high resolution imaging at shallow depth and low resolution deep tissue imaging on the same sample in vivo is demonstrated.

Abstract

Photoacoustic microscopy (PAM) is a fast-growing invivo imaging modality that combines both optics and ultrasound, providing penetration beyond the optical mean free path (~1 mm in skin) with high resolution. By combining optical absorption contrast with the high spatial resolution of ultrasound in a single modality, this technique can penetrate deep tissues. Photoacoustic microscopy systems can have either a low acoustic resolution and probe deeply or a high optical resolution and probe shallowly. It is challenging to achieve high spatial resolution and large depth penetration with a single system. This work presents an AR-OR-PAM system capable of both high-resolution imaging at shallow depths and low-resolution deep-tissue imaging of the same sample in vivo. A lateral resolution of 4 µm with 1.4 mm imaging depth using optical focusing and a lateral resolution of 45 µm with 7.8 mm imaging depth using acoustic focusing were successfully demonstrated using the combined system. Here, in vivo small-animal blood vasculature imaging is performed to demonstrate its biological imaging capability.

Introduction

High-resolution optical imaging modalities, such as optical coherence tomography, confocal microscopy, and multiphoton microscopy, have numerous benefits. However, the spatial resolution decreases significantly as the imaging depth increases. This is because of the diffuse nature of light transport in soft tissues1,2. The integration of optical excitation and ultrasound detection provides a solution to overcome the challenge of high-resolution optical imaging in deep tissues. Photoacoustic microscopy (PAM) is one such modality that can provide deeper imaging than other optical imaging modalities. It has been s....

Protocol

All animal experiments were performed according to the approved regulations and guidelines of the Institutional Animal Care and Use Committee of Nanyang Technological University, Singapore (Animal Protocol Number ARF-SBS/NIE-A0263).

1. AR-OR-PAM System (Figure 1)

  1. System configuration: AR-PAM
    1. Use a nanosecond tunable laser system consisting of a diode-pumped, solid-state Nd-YAG laser (532 nm) and a dye laser with a tunability range of 559-576 nm as the optical irradiation source. Set the laser wavelength to 570 nm using an external controller and the repetition rate of th....

Results

The schematic of the AR-OR-PAM system is shown in Figure 1. In this setup, all components were integrated and assembled in an optical cage setup. The use of a cage system makes the AR-OR-PAM scanning head compact and easily assembled, aligned, and integrated onto a single scanning stage.

Two-dimensional continuous raster scanning of the imaging head was used during image acquisition. The time-resolv.......

Discussion

In conclusion, a switchable AR and OR PAM system that can achieve both high-resolution imaging at lower imaging depths and lower-resolution imaging at higher imaging depths has been developed. The lateral resolution and imaging depth of the switchable system was determined. The advantages of this switchable PAM system include: (1) the high-resolution imaging using tight optical focusing; (2) the deep-tissue imaging using acoustic focusing; 3) the dark-field illumination for AR-PAM, which prevents strong PA signals from a.......

Disclosures

All animal experiments were performed according to the approved guidelines and regulations of the Institutional Animal Care and Use Committee of Nanyang Technological University, Singapore (Animal Protocol Number ARF-SBS/NIE-A0263). The authors have no relevant financial interests in the manuscript and no other potential conflicts of interest to disclose.

Acknowledgements

The authors would like to acknowledge the financial support from a Tier 2 grant funded by the Ministry of Education in Singapore (ARC2/15: M4020238). The authors would also like to thank Mr. Chow Wai Hoong Bobby for the machine shop help.

....

Materials

NameCompanyCatalog NumberComments
Q-switched Nd:YAG laserEdgewaveBX80-2-LPump laser 
Credo-High Repetition Rate Dye LaserSpectra physicsCREDO-DYE-NDye laser
Precision Linear StagePhysik InstrumentePLS 85 XY raster scanning stage
Translation stagePhysik InstrumenteVT 80 Confocal determine
Mounted Silicon photodiodeThorlabsSM05PD1ATriggering/Pulse variation
Motorized continuous Rotational stage ThorlabsCR1/M-Z7Diverting laser beam
Mounted Continuously Variable ND FilterThorlabsNDC-50C-4MIntensity variable
Fiber Patch CableThorlabsM29L01Multimode fiber
Microscope objectiveNewportM-10XObjective 
XY translating mountThorlabsCXY1Translating mount
Plano convex lensThorlabsLA1951Collimating lens
Conical lens AltechnaAPX-2-B254Ring shape beam
Translation stageThorlabsCT1Translating stage
Optical condenserHome made
Ultrasonic transducerOlympus-NDTV214-BB-RM50MHz transducer
Plano concave lensThorlabsLC4573Acoustic lens
Pulser/ReceiverOlympus-NDT5073PRPulse echo amplifier 
Mounted standard irisThorlabsID12/MBeam shaping
Plano convex lensThorlabsLA4327Condenser lens
Mounted precision pinholeThorlabsP50SSpatial filtering
Single mode fiber patch cableThorlabsP1-460B-FC-1Single mode fiber
Fiber couplerNewportF-91-C1Single mode coupling
Achromatic doublet lensEdmund Optics32-317Achromatic doublet
Protected silver elliptical mirrorThorlabsPFE10-P01Mirror
Right angle kinematic mirror mountThorlabsKCB1Mirror mount
Z-Axis Translation MountThorlabsSM1Zz translator
Lens tubeThorlabsSM05L10
UV Fused Silica Right-Angle PrismThorlabsPS615Right angle prism
Rhomboid prismEdmund Optics47-214Shear wave
DimethylpolysiloxaneSigma AldrichDMPS1MSilicon oil
AmplifierMini CircuitsZFL-500LNAmplifier
16 bit high speed digitizerSpectrumM4i.4420Data acquisition card
OscilloscopeAgilent TechnologiesDS06014A
Mice InVivos Pte.LtdICRAnimal model
Ultrasound gel Progress/parker acquasonic gelPA-GEL-CLEA-5000Acoustic coupling
Water tankHome made
Translation stageHomemadeSwitching AR-OR
Gold nanoparticlesSigma Aldrich742031Lateral resolution
Sterile ocular ointmentAlconDuratearsAnimal imaging
1951 USAF resolution test targetEdmund Optics38257Confocal alignment
Data acquisition softwareNational InstrumentLabviewHome made software using Labview
Image Processing softwareMathworksMatlabHome made program using Matlab

References

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Photoacoustic MicroscopySwitchable Acoustic And Optical ResolutionIn Vivo Small animal ImagingBlood VasculatureNd YAG LaserDitunable LaserOptical CageAR PAMOR PAMUltrasonic TransducerOptical CondenserSingle mode FiberAchromatic Doublet Lens

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved