É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Method Article
* Estes autores contribuíram igualmente
A imagem latente ótica de Transcranial permite a imagem latente do largo-campo do transporte do líquido cerebrospinal no córtice de ratos vivos através de um crânio intacto.
O fluxo de líquido cefalorraquidiano (LCR) em roedores tem sido largamente estudado com quantificação ex vivo de Traçadores. As técnicas tais como a microscopia do dois-fotão e a imagem latente de ressonância magnética (MRI) permitiram in vivo a quantificação do fluxo do CSF mas são limitadas por volumes reduzidos da imagem latente e pela baixa definição espacial, respectivamente. O trabalho recente constatou que o LCR entra no parênquima cerebral através de uma rede de espaços perivasculares em torno das artérias piais e penetrantes do córtex do roedor. Esta entrada perivascular do CSF é um excitador preliminar do sistema glymphatic, um caminho implicado no afastamento de solutos metabólicos tóxicos (por exemplo, amyloid-β). Aqui, nós ilustramos uma técnica macroscópica nova da imagem latente que permita o tempo real, imagem latente mesoscópicos de traçadores fluorescentes do CSF através do crânio intacto de ratos vivos. Este método minimamente invasivo facilita uma infinidade de experimentos experimentais e permite o teste único ou repetido da dinâmica do LCR. Os macroscópios têm alta resolução espacial e temporal e seu grande pórtico e distância de trabalho permitem a criação de imagens durante a execução de tarefas em dispositivos comportamentais. Esta aproximação da imagem latente foi validada usando a imagem latente do dois-fotão e as medidas da fluorescência obtidas desta técnica correlacionam fortemente com a fluorescência ex vivo e a quantificação de Tracers rádio-etiquetados. Neste protocolo, nós descrevemos como a imagem latente macroscópica Transcranial pode ser usada para avaliar o transporte glymphatic em ratos vivos, oferecendo uma alternativa acessível às modalidades mais caras da imagem latente.
O líquido cefalorraquidiano (LCR) Bane o cérebro e a medula espinhal e está envolvido na manutenção da homeostase, fornecendo nutrientes e regulando a pressão intracraniana1. O CSF no espaço subarachnoid entra no cérebro através de uma rede de espaços perivasculares (PVS) que cercam artérias pial corticais e flui então para baixo ao longo das arteríolas penetrantes2. Uma vez no parênquima, as trocas de LCR com fluido intersticial (ISF), transportando metabólitos nocivos como amiloide-β (aβ) e proteínas tau agregam fora do cérebro através de intervalos de matéria branca de baixa resistência e espaços perivenosos2,3 . Este caminho é dependente de astroglial Aquaporin-4 (AQP4) canais e, portanto, tem sido denominado o glial-linfático (glymphatic) sistema4. Os produtos waste do neurópilo são cancelados finalmente do CSF-ISF através dos vasos linfáticos perto dos nervos cranianos e nas meninges para fora para os nós de linfa cervicais5. A falha deste sistema foi implicada em diversas doenças neurológicas tais como a doença de Alzheimer6,7, ferimento de cérebro traumático3, e curso isquêmico e hemorrágico8.
O transporte do CSF pode ser visualizado pela infusão de traçadores na cisterna magna (cm)9,10 e os estudos glicmfáticos no passado utilizaram principalmente a microscopia de dois fótons4,11,12, 12, 13, ressonância magnética (RM)14,15,16,17e ex vivo Imaging3,6,11, 18 para avaliar a cinética do traçador. A microscopia do dois-fotão é um método apropriado para a imagem latente detalhada de traçadores do CSF nos PVSs e o parênquima devido a sua definição espacial elevada, entretanto, tem um campo de visão estreito e exige uma janela craniana invasora ou um afinamento do crânio. A imagem latente ex vivo, em combinação com Immunohistochemistry, permite análises multinível que variam das únicas pilhas até o cérebro inteiro19. No entanto, o processo de fixação da perfusão que é necessário para observar o tecido pós-morte produz profundas mudanças na direção do fluxo do LCR e colapsa o PVS, alterando significativamente a distribuição e a localização dos traçadores12. Finalmente, quando MRI puder controlar o fluxo do CSF durante todo o cérebro murino e humano inteiro, falta a definição espacial e temporal do fluxo perivascular.
Uma técnica nova, imagem latente macroscópica transcraniana, resolve algumas destas limitações permitindo a imagem latente do largo-campo do transporte perivascular do CSF no córtice dorsal inteiro de ratos vivos. Este tipo de imagem é feito com um Macroscópio epifluorescente usando um cubo de filtro multibanda, fonte de luz LED sintonável, e câmera CMOS de alta eficiência10. Estes set-ups são capazes de resolver PVSs até 1-2 mm abaixo da superfície do crânio e pode detectar fluoróforos até 5-6 mm abaixo da superfície cortical, deixando o crânio totalmente intacto10. Os filtros e os diodos emissores de luz Multiband que podem rapidamente ajustar o comprimento de onda da excitação permitem o uso de fluoróforos múltiplos permitindo que o CSF seja etiquetado com os traçadores de pesos moleculars e de propriedades químicas diferentes na mesma experiência.
Este procedimento requer uma cirurgia simples, minimamente invasiva para expor o crânio e colocar uma placa de cabeça de peso leve para estabilizar a cabeça durante a sessão de imagem. Os traçadores podem ser entregues no cm sem perfurar no crânio ou penetrar o tecido cortical com pipetas ou cânulas9,20. Ambas as cânulas CM e placas de cabeça permanecem estáveis por vários dias a semanas e facilitam projetos experimentais mais complexos em comparação com a visualização clássica do ponto final. Este protocolo descreve como a imagem latente macroscópica Transcranial é usada para estudar a função glymphatic do sistema que segue a injeção aguda ou crônica do Tracer fluorescente do CSF no CM de ratos anestesiados/dormindo ou acordados.
Todos os experimentos foram aprovados pelo Comitê universitário de recursos animais (UCAR, protocolo n º 2011-023) da Universidade de Rochester e realizados de acordo com o guia NIH para o cuidado e uso de animais de laboratório.
1. preparando a cânula da cisterna magna, a placa principal, e o suporte principal
2. procedimento cirúrgico
3. preparando o mouse para a imagem
Observação: o protocolo varia dependendo se o experimento de imagem será executado em um mouse anestesiado (iniciar no passo 3,1) ou acordado (iniciar no passo 3,2).
4. infusão de traçadores fluorescentes do CSF
5. Configurando a sessão de imagem
6. experimento de imagem óptica transcraniana
7. análise de dados
Observação: as análises baseadas em MATLAB, como o rastreamento frontal do CSF, podem extrair grandes quantidades de dados quantitativos das frentes de traçador nesses conjuntos de dados de imagens10,22. No entanto, esses tipos de arquivos também podem ser facilmente importados e analisados em software de análise de imagem de código aberto como Fiji23.
O afluxo do CSF é imaged em um Macroscópio epifluorescente (Figura 1a), que permita a imagem latente mesoscópicos do transporte do Tracer do CSF no córtice murino. A placa da cabeça do inteiro-crânio permite o visualização dos ossos nasais rostral, dos ossos frontais e parietal no centro, e da parcela rostral do osso interparietal caudalmente (Figura 1b). Durante a imagem, as suturas nasofrontal, sagital, coronal e lambdóide podem ser prontamente identi...
Nós descrevemos um protocolo detalhado para executar a imagem latente Transcranial do CSF em ratos vivos usando macroscópios e traçadores fluorescentes comercialmente-disponíveis. Esta técnica é simples e minimamente invasiva, mas quantitativa. A imagem latente in vivo correlaciona bem com os métodos sensíveis tais como a contagem líquida do cintilação de traçadores rádio-etiquetados que incluem 3H-Dextran e 14C-Inulin após a entrega do cm, e com a quantificação ex vivo da seção co...
Os autores não têm nada a revelar.
Este trabalho foi financiado pelo Instituto Nacional de distúrbios neurológicos e AVC e pelo Instituto Nacional de envelhecimento (institutos nacionais de saúde dos EUA; R01NS100366 e RF1AG057575 a MN), o programa de redes de excelência transatlântica Fondation Leducq e o programa de investigação e inovação da UE Horizon 2020 (subvenção n. º 666881; SVDs @ Target). Também gostaríamos de agradecer a Dan Xue pela assistência especializada com ilustrações gráficas.
Name | Company | Catalog Number | Comments |
0.25% Bupivacaine HCl | University of Rochester Vivarium | ||
100 µL Gastight Syringe Model 1710 TLL, PTFE Luer Lock | Hamilton Company | 81020 | |
A-M Systems Dental Cement Powder | Fisher Scientific | NC9991371 | |
Carprofen | University of Rochester Vivarium | ||
Chlorhexidine | Prevantics | B10800 | |
CMOS Camera | Hammamatsu | ORCA Flash 4.0 | |
Head Plate | University of Rochester | No catalog # | Custom made at the machine shop at the University of Rochester |
High-Temperature Cautery | Bovie Medical Corporation | AA01 | |
Insta-set Accelerator | Bob Smith Industries | BSI-151 | |
Isoflurane - Fluriso | Vet One | 502017 | University of Rochester Vivarium |
Ketamine | Strong Memorial Hospital Pharmacy | ||
Krazy Glue | Elmer's Products, Inc | No catalog #, see link in comments | https://www.amazon.com/Krazy-Glue-KG48348MR-Advance-Multicolor/dp/B000BKO6DG |
Micropore Surgical tape | Fisher Scientific | 19-027-761 | |
Paraformaldehyde | Sigma-aldrich | P6148 | |
PE10 - Polyethylene .011" x .024" per ft., 100 ft. continuous | Braintree Scientific | PE10 100 FT | |
Pump 11 Elite Infusion Only Dual Syringe | Harvard Apparatus | 70-4501 | |
PURALUBE VET OINTMENT | Dechra | ||
Puritan PurSwab Cotton Tipped Cleaning Sticks | Fisher Scientific | 22-029-553 | |
Research Macro Zoom Microscope | Olympus | MVX10 | |
Simple Head Holder Plate (for mice) | Narishige International USA Inc | MAG-1 | |
Single-use Needles, BD Medical | VWR | BD305106 | |
Sterile Alcohol Prep Pads | Fisher Scientific | 22-363-750 | |
Tunable LED | PRIOR Lumen 1600-LED | ||
Xylazine | University of Rochester Vivarium |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados