É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
Este estudo descreve um método para isolar e purificar vesículas extracelulares bacterianas (BEVs) enriquecidas de fezes humanas via centrifugação por gradiente de densidade (DGC), identifica as características físicas dos BEVs a partir da morfologia, tamanho de partícula e concentração, e discute as potenciais aplicações da abordagem DGC em pesquisa clínica e científica.
As vesículas extracelulares bacterianas (BEVs) são nanovesículas derivadas de bactérias que desempenham um papel ativo na comunicação bactéria-bactéria e bactéria-hospedeiro, transferindo moléculas bioativas como proteínas, lipídios e ácidos nucléicos herdados das bactérias mãe. Os BEVs derivados da microbiota intestinal têm efeitos dentro do trato gastrointestinal e podem atingir órgãos distantes, resultando em implicações significativas para a fisiologia e patologia. Investigações teóricas que explorem os tipos, quantidades e papéis de BEVs derivados de fezes humanas são cruciais para entender a secreção e a função de BEVs da microbiota intestinal. Essas investigações também requerem um aprimoramento na estratégia atual de isolamento e purificação de BEVs.
Este estudo otimizou o processo de isolamento e purificação de BEVs estabelecendo dois modos de centrifugação por gradiente de densidade (DGC): Top-down e Bottom-up. A distribuição enriquecida dos BEVs foi determinada nas frações 6 a 8 (F6-F8). A eficácia da abordagem foi avaliada com base na morfologia das partículas, tamanho, concentração e teor de proteínas. As taxas de recuperação de partículas e proteínas foram calculadas, e a presença de marcadores específicos foi analisada para comparar a recuperação e pureza dos dois modos de DGC. Os resultados indicaram que o modo de centrifugação Top-down apresentou menores níveis de contaminação e alcançou uma taxa de recuperação e pureza semelhante à do modo Bottom-up. Um tempo de centrifugação de 7 h foi suficiente para atingir uma concentração de BEV fecal de 108/mg.
Além das fezes, este método pode ser aplicado a outros tipos de fluidos corporais com modificação adequada de acordo com as diferenças de componentes e viscosidade. Em conclusão, este protocolo detalhado e confiável facilitaria o isolamento e purificação padronizados de BEVs e, assim, estabeleceria uma base para análises multi-ômicas subsequentes e experimentos funcionais.
O intestino é amplamente reconhecido como o órgão que abriga as comunidades microbianas mais abundantes no corpo humano, com mais de 90% das bactérias envolvidas na colonização e multiplicação 1,2. Extensas evidências têm demonstrado que a microbiota intestinal modula o microambiente intestinal e, simultaneamente, interage com disfunção em órgãos distantes, principalmente através de uma barreira intestinal prejudicada 3,4. Evidências crescentes indicam uma correlação entre o desequilíbrio da microbiota intestinal e a progressão da doença inflamatória intestinal (DII)5,6, bem como distúrbios cognitivos através do eixo intestino-cérebro5,6,7,8. As vesículas extracelulares bacterianas (BEVs) produzidas por bactérias desempenham papéis significativos nesses processos patológicos.
BEVs são partículas em nanoescala que encapsulam derivados bacterianos, com diâmetros variando de 20 a 400 nm. Eles têm sido demonstrados para facilitar as interações entre bactérias e seus organismos hospedeiros 9,10. Apesar de sua invisibilidade, essas partículas têm recebido cada vez mais atenção dos pesquisadores devido às suas amplas aplicações prospectivas como biomarcadores diagnósticos, alvos terapêuticos e veículos de liberação de fármacos11. As fezes humanas, frequentemente usadas como bioespécimes para estudar BEVs, predominantemente provenientes de bactérias intestinais, contêm uma mistura complexa de água, bactérias, lipídios, proteínas, resíduos alimentares não digeridos e células epiteliais esfoliadas, entre outros. A intrincada composição fecal coloca desafios ao isolamento e pureza dos BEVs, impedindo uma análise abrangente, objetiva e realista dos BEVs. Assim, estratégias efetivas para minimizar a interferência de componentes contaminantes e aumentar o rendimento dos BEVs têm emergido como questões críticas que merecem atenção imediata.
As estratégias de isolamento existentes dependem em grande parte de técnicas como centrifugação em ultra-alta velocidade (UC), centrifugação por gradiente de densidade (DGC) e cromatografia de exclusão de tamanho (SEC)12,13,14,15,16,17. Atualmente, a DGC é um dos métodos mais amplamente aplicados no campo da separação de BEV, englobando dois modos de sedimentação-flutuação, "Top-down" e "Bottom-up", que são determinados pela posição de carregamento inicial da amostra. Essas metodologias diferenciam as vesículas extracelulares (EVs) de outros componentes com base nas disparidades de tamanho e densidade, produzindo taxas variáveis de pureza e recuperação. Pesquisas anteriores indicaram que estratégias de abordagem única são insuficientes para separar adequadamente os EVs das proteínas solúveis em amostras de fluido corporal, como a lipoproteína no sangue18 e a proteína Tamm-Horsfall na urina19. Além disso, a distribuição de tamanho das vesículas extracelulares (EEVs) eucarióticas frequentemente se sobrepõe à dos BEVs, necessitando de maiores aprimoramentos metodológicos para otimizar o rendimento do BEV. Consequentemente, o avanço do estudo dos BEVs depende do desenvolvimento de metodologias eficazes de separação e purificação. Notavelmente, Tulkens e cols.15 empregaram uma estratégia biofísica ortogonal para separar BEVs fecais de EEVs, na qual o tempo de centrifugação de um modo Bottom-up DGC foi de até18 h. Em contrapartida, este estudo reduziu para 7 h, economizando muito o tempo de gradiente-ultracentrifugação e simplificando o processo.
No presente estudo, isolamos e purificamos BEVs fecais empregando dois modos de DGC sob condições de tampão otimizadas, após enriquecer BEVs com uma faixa de velocidades de centrifugação diferencial, de baixa a extremamente alta velocidade. Avaliações baseadas em morfologia, tamanho de partícula e concentração indicaram um desempenho louvável por este método aprimorado. Este estudo poderia servir como base para pesquisas futuras, estendendo suas aplicações para um domínio mais amplo e oferecendo insights sobre a heterogeneidade dos BEVs dentro do corpo humano. Também contribui para a padronização das técnicas de separação e análise de BEV.
O Comitê de Ética do Hospital Nanfang, Southern Medical University, sancionou este estudo, que foi conduzido com o consentimento informado dos participantes. Todos os métodos aqui empregados seguiram as diretrizes operacionais padrão fornecidas pelas Normas Internacionais de Microbioma Humano (IHMS: http://www.microbiome-standards.org/). Todos os procedimentos subsequentes de manuseio de líquidos foram obrigados a serem realizados dentro de um gabinete de biossegurança ou uma bancada ultralimpa.
1. Coleta e aliquotação de amostras fecais
2. Preparo da amostra de fezes
3. Centrifugação de velocidade diferencial
4. Centrifugação de ultra-alta velocidade
5. Preparação da solução para centrifugação por gradiente de densidade
6. Estabelecimento de um sistema de centrifugação por gradiente de densidade
7. Centrifugação por gradiente de densidade e coleta de frações
8. Caracterização e análise quantitativa das frações coletadas
Determinar a distribuição das frações enriquecidas com BEV
Para determinar a distribuição das frações enriquecidas com vesículas extracelulares bacterianas (BEVs), um controle em branco foi estabelecido para medir os valores de absorbância em OD 340 nm, e a densidade de cada fração foi calculada com base nas medidas e diretrizes de iodixanol (Passo 8.1). A Tabela 2 apresenta os resultados de densidade, demonstrando que as frações F4 a F9 exibiram densidades dentro da fai...
As vesículas extracelulares bacterianas (VEB) são nanopartículas de bicamada lipídica secretadas por bactérias, carregando uma riqueza de proteínas, lipídios, ácidos nucléicos e outras moléculas bioativas, contribuindo para mediar os efeitos funcionais das bactérias20. Verificou-se que os BEVs derivados do intestino estão envolvidos no desenvolvimento de doenças, como doença inflamatória intestinal, doença de Crohn e câncer colorretal, além de afetar o metabolismo geral e mediar ...
Os autores declaram não haver conflito de interesses.
Este trabalho foi apoiado pelo National Science Fund for Distinguished Young Scholars (82025024); o projeto-chave da Fundação Nacional de Ciências Naturais da China (82230080); o Programa Nacional de P&D da China (2021YFA1300604); a Fundação Nacional de Ciências Naturais da China (81871735, 82272438 e 82002245); Fundo de Ciências Naturais de Guangdong para Jovens Académicos Ilustres (2023B1515020058); Fundação de Ciências Naturais da Província de Guangdong (2021A1515011639); o Programa Estadual de Desenvolvimento de Pesquisa Básica da Fundação de Ciências Naturais da Província de Shandong, na China (ZR2020ZD11); a Fundação de Ciência Pós-doutoral (2022M720059); o Esquema de Desenvolvimento de Jovens Excepcionais do Hospital Nanfang, Southern Medical University (2022J001).
Name | Company | Catalog Number | Comments |
1 % (w/v) glutaraldehyde (prepared from 2.5 % stock solution in deionized water) | ACMEC | AP1126 | Morphological observation for BEVs using TEM at Step 8.3.3 |
1 % (w/v) methylcellulose (prepared from original powder in deionized water) | Sigma-Aldrich | M7027 | Morphological observation for BEVs using TEM at Step 8.3.6 |
1.5 % (w/v) uranyl acetate (prepared from original powder in deionized water) | Polysciences | 21447-25 | Morphological observation for BEVs using TEM at Step 8.3.5 |
1000 μL, 200 μL, 10 μL Pipette | KIRGEN | KG1313, KG1212, KG1011 | Transfer the solution |
5 % (w/v) bovine serum albumin solution (prepared from the original powder in TBST buffer) | Fdbio science | FD0030 | Used in western blotting for blocking at Step 8.5.6 |
5 × loading buffer | Fdbio science | FD006 | Used in western blotting and Coomassie brilliant blue stain at Step 8.5.1 |
75 % (v/v) alcohol | LIRCON | LIRCON-500 mL | Surface disinfection |
96-well plate | Rar | A8096 | Measure the absorbance values |
Anti-Calnexin antibody | Abcam | ab92573 | Western blotting (Primary Antibody) |
Anti-CD63 antibody | Abcam | ab134045 | Western blotting (Primary Antibody) |
Anti-CD9 antibody | Abcam | ab236630 | Western blotting (Primary Antibody) |
Anti-Flagellin antibody | Sino Biological | 40067-MM06 | Western blotting (Primary Antibody) |
Anti-Integrin beta 1 antibody | Abcam | ab30394 | Western blotting (Primary Antibody) |
Anti-LPS antibody | Thermo Fisher | MA1-83152 | Western blotting (Primary Antibody) |
Anti-LTA antibody | Thermo Fisher | MA1-7402 | Western blotting (Primary Antibody) |
Anti-OmpA antibody | CUSABIO | CSB-PA359226ZA01EOD, https://www.cusabio.com/ | Western blotting (Primary Antibody) |
Anti-Syntenin antibody | Abcam | ab133267 | Western blotting (Primary Antibody) |
Anti-TSG101 antibody | Abcam | ab125011 | Western blotting (Primary Antibody) |
Autoclave | ZEALWAY | GR110DP | Sterilization for supplies and mediums used in the experiment |
Balance | Mettler Toledo | AL104 | Balance the tube sample-loaded with PBS |
Bicinchoninic acid assay | Fdbio science | FD2001 | Measure protein content of BEVs at Step 8.2 |
BioRender | BioRender | https://app.biorender.com | Make the schematic workflow of BEVs isolation and purification showed in Figure 1 |
Biosafety cabinet | Haier | HR1200- II B2 | Peform the procedures about feces sample handling |
Centrifuge 5810 R; Rotor F-34-6-38 | Eppendorf | 5805000092; 5804727002, adapter: 5804774000 | Preprocess for BEVs (Step 3) |
Chemiluminescence Apparatus | BIO-OI | OI600SE-MF | Used in western blotting for signal detection at Step 8.5.12 |
Cytation 5 | BioTek | F01 | Microplate detector for measuring the absorbance (Step 8.1) and fluorescence (Figure 6) values |
Dil-labled low density lipoprotein | ACMEC | AC12038 | Definition of distribution of interfering components |
Electrophoresis equipment | Bio-rad | 1658033 | Used in western blotting for protein separation and transfer at Step 8.5.2, 8.5.3, 8.5.5 |
Enhanced Chemiluminescence kit HRP | Fdbio science | FD8020 | Used in western blotting for signal detection at Step 8.5.12 |
Escherichia coli | American Type Culture Collection | ATCC8739 | Isolate BEVs as a positive control. Protocol: Dissolve 25 g of the LB powder in 1 L deionized water, and autoclave. Transfer the 800 μL of preserved Escherichia coli into the medium. Cultivate at 37 °C in the incubator shaker. Then centrifuge at 3, 000 × g for 20 min at 4 °C, 12, 000 × g for 30 min at 4 °C, filter the supernatant through 0.22 μm membrane, and perform ultra-speed centrifugation at 160, 000 × g for 70 min at 4 °C. Pellet defined as crude BEVs from Escherichia coli was suspended in 1.2 mL PBS (Step 3, 4). |
Falcon tubes 50 mL | KIRGEN | KG2811 | Preprocess for BEVs (Step 3) |
Feto Protein Staining Buffer | Absci | ab.001.50 | Coomassie brilliant blue staining at Step 8.5.4 |
Filter paper | Biosharp | BS-TFP-070B | Morphological observation for BEVs using TEM at Step 8.3 (Blotting the solution) |
Formvar/Carbon supported copper grids | Sigma-Aldrich | TEM-FCF200CU50 | Morphological observation for BEVs using TEM at Step 8.3 |
HEPES powder | Meilunbio | MB6078 | Prepare iodixanol buffers with different concentrations for density gradient centrifugation |
HRP AffiniPure Goat Anti-Mouse IgG (H+L) | Fdbio science | FDM007 | Western blotting (Secondary Antibody) |
HRP AffiniPure Goat Anti-Rabbit IgG (H+L) | Fdbio science | FDR007 | Western blotting (Secondary Antibody) |
Incubator shaker | Qiangwen | DHZ-L | Cultivate Escherichia coli |
Kimwipes™ Delicate Task Wipes | Kimtech Science | 34155 | Wipe the inner wall of the ultracentrifuge tube at Step 4.15 |
LB broth | Hopebio | HB0128 | Cultivate Escherichia coli |
Low temperature freezer (-80 °C) | Haier | DW-86L338J | Store the samples |
Methanol | Alalddin | M116118 | Used in western blotting for activating PVDF membrane at Step 8.5.5 |
Micro tubes 1.5 mL | KIRGEN | KG2211 | Recover fractions after density gradient centrifugation |
Micro tubes 2 mL | KIRGEN | KG2911 | Recover fractions after density gradient centrifugation |
Micro tubes 5 mL | BBI | F610888-0001 | Recover fractions after density gradient centrifugation |
Microplate reader | Thermo Fisher | Multiskan MK3 | Measure protein content of BEVs at Step 8.2 |
Millipore filter 0.22 μm | Merck millipore | SLGP033RB | Filtration sterilization; Material: polyethersulfone, PES |
NaCl | GHTECH | 1.01307.040 | Density gradient centrifugation solution |
NaOH | GHTECH | 1.01394.068 | Density gradient centrifugation solution (pH adjustment) |
Optima™ XPN-100 | Beckman Coulter | A94469 | Ultracentrifugation for BEVs isolation at Step 4, 7 |
OptiPrep™ | Serumwerk Bernburg AG | 1893 | Density gradient centrifugation stock solution |
Orbital Shaker | Youning | CS-100 | Dissolve feces at Step 2 |
Phosphate buffered saline | Procell | PB180327 | Dissolve feces at Step 2 |
Pipettor | Eppendorf | 3120000267, 3120000259 | Transfer the solution |
Plastic pasteur pipette | ABCbio | ABC217003-4 | Remove supernatant in preprocessing at Step 3.4 |
Polyvinylidene difluoride (PVDF) membranes | Millipore | ISEQ00010, IPVH00010 | Used in western blotting for protein transfer at Step 8.5.5 |
Prefabricated polyacrylamide gel, 4–20% 15 Wells | ACE | F15420Gel | Used in western blotting for protein separation at Step 8.5.2, 8.5.3 |
Primary antibody diluent | Fdbio science | FD0040 | Used in western blotting at Step 8.5.8 |
Protein ladder | Fdbio science | FD0672 | Used in western blotting and Coomassie brilliant blue stain at Step 8.5 |
Rapid protein blotting solution | UBIO | UW0500 | Used in western blotting for protein transfer at Step 8.5.5 |
Rotor SW 32 Ti Swinging-Bucket Rotor | Beckman Coulter | 369650 | Ultracentrifugation for BEVs isolation at Step 4, 7 |
Syringe 20 mL, 50 mL | Jetway | ZSQ-20ML, YCXWJZSQ-50 mL | Transfer buffers amd remove supernatant in preprocessing |
TBS powder | Fdbio science | FD1021 | Used in western blotting at Step 8.5 |
Transmission electron microscope (TEM) | Hitachi | H-7650 | Morphological observation for BEVs at Step 8.3 |
Tween-20 | Fdbio science | FD0020 | Used in western blotting at Step 8.5 |
Ultracentrifuge tube | Beckman | 326823, 355642 | Ultracentrifugation for BEVs isolation at Step 4, 7 |
Ultra-clean bench | AIRTECH | SW-CJ-2FD | Peform the procedures about liquid handling |
Water bath | Bluepard | CU600 | Used for measuring protein content of BEVs at Step 8.2.5 |
ZetaView | Particle Metrix | S/N 21-734, Software ZetaView (version 8.05.14 SP7) | Nanoparticle tracking analysis (NTA) for measuring the particle size and concentrarion of BEVs at Step 8.4 |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoExplore Mais Artigos
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados